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Tiling versus Spectrality

Let G be a locally compact abelian group and pG denotes its dual.
Let µ denote the Haar measure on G and let S Ď G be a subset
with 0 ă µpSq ă 8.

§ A set Λ Ă pG is called the spectrum of S , if the characters
tλuλPΛ gives an orthogonal basis of L2pSq. If there exists such
a set S , then S is called a spectral set.

§ S is called a tile of G , if there exists a set T Ď G such that
up to a set of measure zero every element of G can be
uniquely written of the form s ` t, where s P S , t P T . This
we denote by S ` T “ G .



Fuglede’s conjecture and his results

Conjecture (Fuglede ’74)

Let S Ă Rd be a bounded measurable set with λpSq ą 0. Then S
tiles Rd by translation if and only if S is spectral. The spectral sets
and tiles coincide in Rd .

Theorem (Fuglede ’74)

§ If S Ă Rd is a tile whose tiling partner is a lattice, then S is
spectral.

§ If S Ă Rd is spectral with spectrum which is a lattice, then S
tiles Rd .

§ Disc and triangle in R2 is neither spectral, nor a tile.

Conjecture (Fuglede’s conjecture on finite abelian groups)

Let G be a finite abelian group and S Ă G . Then S is a spectral if
and only if S is a tile.



Fuglede’s conjecture in Rd : Spectral ñ Tile direction

The conjecture has been disproved.

Theorem
§ Tao ’04: There is a spectral set of size 6 in Z5

3, hence
Fuglede’s conjecture is not true in Rd , if d ě 5.

§ Matolcsi ’05: There is a spectral set of size 6 in Z4
3, hence

Fuglede’s conjecture is not even true in R4.

§ Kolountzakis-Matolcsi ’06: There is a spectral set of size 6 in
Z3
8, hence Fuglede’s conjecture is not even true in R3.

For convex domains positive result is true by Lev and Matolcsi ’22.

Theorem
Fuglede’s conjecture holds on convex domains of Rd .



Tile ñ Spectral direction

Lagarias and Wang ’97 posed the following conjecture.

Conjecture (Universal Spectral Set Conjecture (USSC))

If a set S tiles a group with tiling partners T1, . . . ,Tn, then they
are spectral and they have a common spectrum.

Theorem
§ Kolounztakis-Matolcsi ’05: In Z5

6 USSC fails. This implies
that TileñSpectral direction fails (TÛ S) in Rd (d ě 5).

§ Farkas-Révész ’06: In Z4
6 USSC fails. This implies TÛ S in

R4.

§ Farkas-Matolcsi-Móra ’06: In Z3
24 USSC fails. This implies

TÛ S in R3 .



Open questions

Open Question

Does Fuglede’s conjecture hold in R and R2?

The question on R is closely connected to analogue question on
cyclic groups; many subcases are known.
The question on R2 is widely open; a few subcases are known.

Open Question

What are those finite abelian groups where Fuglede’s conjecture
holds?



Fuglede’s conjecture on finite Abelian groups

Conjecture (Fuglede’s conjecture on finite Abelian groups)

Let S tiles G by translation if and only if the functions on S has an
orthogonal basis of characters of G .

Every counterexample mentioned is based on the following. If we
have a counterexample on a finite abelian group with d generators,
then it can be extended to a counterexample in Zd and blow it up
to one in Rd .
Denoting S ´ TpG q (resp. T ´ SpG q), if the Spectral ñ Tile
(resp. Tile ñ Spectral) direction of Fuglede’s conjecture holds in
G . We have the following implication:

T ´ SpRdq ùñ T ´ SpZdq ùñ T ´ SpGdq,

S ´ TpRdq ùñ S ´ TpZdq ùñ S ´ TpGdq,

where Gd can be any Abelian group of d generators.



One dimensional case

For T ´ S direction we can say more in the one dimensional case.
The following was presented by Dutkay and Lai.

T ´ SpRq ðñ T ´ SpZq ðñ T ´ SpZNq.

Conjecture

S ´ TpRq ðñ S ´ TpZq ðñ S ´ TpZNq.



Cyclic group case I.

I just summarized the top results in each direction, but many of
them has a longer history.

Theorem
Fuglede’s conjecture holds in the following groups:

§ Zpnqm , where p and q are distinct primes.
n P N, 0 ď m ď 6 P N (R. Malikiosis, 2022),

§ Zpqrs , where p, q, r and s are distinct primes. (GK,
R.Malikiosis, G. Somlai, M. Vizer, 2022),

§ Zpnqr , where p, q and r are distinct primes, n P N. (T. Zhang,
2023).



Cyclic group case II.

Theorem
Every tile is spectral in

§ Zpnqm , where p are q are distinct primes (E. Coven, A.
Meyerovitz, 1999),

§ Zpn1p2...pk
, where pi are distinct primes for all 1 ď i ď k (R.

Malikiosis, 2022),

§ Zp2q2r2 , where p, q and r are distinct primes (I. Londner, I.
Laba, 2023).

Theorem
Fuglede’s conjecture holds in Zp2q2r if r ą p2q2 (T. Fallon, GK, A.
Mayeli, G. Somlai, 2023+).



Mask polynomial

The mask polynomial of S on a cyclic group ZN is defined as
mSpxq “

ř

sPS x s in Zrxs{pxN ´ 1q.

Proposition

If k | N and a character of order k vanishes on S Ď ZN , i.e.,
ř

xPS χpxq “ 0, then every character of order k vanishes on S , i.e.
Φk | mS .

Our aim is to understand which divisibility relations hold for
spectral sets:
Every element 0 ‰ x P S ´ S of a spectral set S implies a
divisibility condition.
We notice that Φpk1 . . .Φpki | mS implies pi | |S | for every prime p
and ki P N, i P N.
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Coven-Meyerowitz properties

Let HS be the set of prime powers pa dividing N such that
Φpapxq | mSpxq.

(T1) mSp1q “ |S | “
ś

dPHS
Φdp1q.

(T2) For pairwise relative prime elements si of HS , Φ
ś

si | mS .

Theorem
§ (Coven-Meyerowitz) If the properties (T1) and (T2) hold for

mS , then S tiles Z.

§ If the size of a tile is pnqm, then (T1) and (T2) hold.

§ ( Laba) If (T1) and (T2) hold for mS , then S is a spectral set.

Corollary

Every tile is spectral in Zpnqm (n,m P N).
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Reduction of the problem

Lemma
Suppose that S be a spectral set. Then the followings hold true.

§ WLOG we can assume that 0 P S and 0 P Λ.

§ If S is contained in a subgroup H of G , where S ´ TpHq

holds, then S is a tile.

§ If Λ is contained in a subgroup H of G , where S ´ TpHq

holds, then S is a tile.

Lemma
If S is the union of Zp cosets, then S tiles G .



Condition on r

The following fact is from Ruxi Shi (Fourier bases 2018 meeting,
Crete)

Lemma
Let S be a spectral set in ZN . Assume that for every divisor d | N
we have S ´ TpZdq. Suppose that for a prime r | N and r ∤ |S | the
following implication holds

Φmr | mS ùñ Φm | mS ,

whenever m | N is coprime to p. Then S is a tile.

Otherwise we get the following.

Lemma
Let r | N be a prime and m | N is such that gcdpm, rq “ 1 and
Φmr | mS but Φm ∤ mS . Then each ZN

r
coset contains at least one

point of S . Thus |S | ě r .

If further r ą p2q2, then Φr | mΛ. Hence r | |S |.



Sketch of the proof

Theorem
Every spectral set of Zp2q2r tiles if r ě p2q2.

We distinguish cases according the divisors of p2q2r . We say that

d || |S |, if gcdpp2q2r , |S |q “ d .

By this reasons we distinguish three cases.

§ Small sets: d || |S |, where r ∤ d : These cases are excluded.

§ Middle size sets: r || |S |, pr || |S |, qr || |S |, or pqr || |S |.

§ Large sets: p2r || |S |, q2r || |S |, p2qr || |S |, pq2r || |S |, or
p2q2r || |S | (also p2q2 || |S |): Pigeonhole principle for the
cardinality of the set implies strict role how S should look like.



Middle sets I.: mod p method

Lemma
If n “ pkm, where p is a prime and p ∤ m, then

Φn | mS in Zrxs ùñ Φm | mS in Zprxs.

Lemma
Let n “ pkm, where p is a prime and p ∤ m, and S is a subset of
Zn. Then the following implication holds. If

Φd | mS in Zprxs @d | m, (1)

then |S | “ km ` lp for nonnegative k , l P Z.



Middle sets II.: Main strategy
We have Φr | mΛ. We assume pqr || |S | (the most problematic
case).

Φp or Φpq or Φpq2 | mΛ ùñ Φp | mΛ in Zqrxs

Φpr or Φpqr or Φpq2r | mΛ ùñ Φpr | mΛ in Zqrxs

Φp2 or Φp2q or Φp2q2 | mΛ ùñ Φp2 | mΛ in Zqrxs

Φp2r or Φp2qr or Φp2q2r | mΛ ùñ Φp2r | mΛ in Zqrxs

Table: System of divisibility relations

Now we apply Lemma: |Λ| “ |S | “ kp2r ` lq, for some
0 ď k , l P N.

§ If k ě 1 and l ě 1, then S is large.
§ If l “ 0, the S is a tile or large.
§ If k “ 0, then S X px ` Zq2q can be: H, a Zq coset, or a full
coset representative system of Zq in Zq2 . By cardinality, each
nonempty intersection is of one type. Similarly idea for p
implies strict rules for S , and hence S tiles.



Middle sets III.: Geometric argument for the excluded cases

If this system of divisibility relations does not hold, then at least a
row of conditions fails simultaneously. For instance,

Φp ∤ mΛ and Φpq ∤ mΛ and Φpq2 ∤ mΛ.

In each Zpq2 coset at most one Zq2 coset contain elements of S .

|S Xpx `Zq2q| ď q ùñ |S Xpx `Zpq2q| ď q ùñ |S XZp2q2r | ď pqr .

Since pqr | |S | we have |S | “ pqr and all ď is “.
We obtain that each Zpq2 coset contains exactly one Zq2 coset
having q elements of S of a given type. Hence S is a tile.



Thank you for your attention!
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