Overview of Fuglede's conjecture on cyclic groups

Gergely Kiss
Alfréd Rényi Institute of Matematics
(based on joint work with T. Fallon, A. Mayeli, G. Somlai)

Harmonic and Spectral Analysis 2023

Tiling versus Spectrality

Let G be a locally compact abelian group and \hat{G} denotes its dual. Let μ denote the Haar measure on G and let $S \subseteq G$ be a subset with $0<\mu(S)<\infty$.

- A set $\Lambda \subset \widehat{G}$ is called the spectrum of S, if the characters $\{\lambda\}_{\lambda \in \Lambda}$ gives an orthogonal basis of $L^{2}(S)$. If there exists such a set S, then S is called a spectral set.
- S is called a tile of G, if there exists a set $T \subseteq G$ such that up to a set of measure zero every element of G can be uniquely written of the form $s+t$, where $s \in S, t \in T$. This we denote by $S+T=G$.

Fuglede's conjecture and his results

Conjecture (Fuglede '74)
Let $S \subset \mathbb{R}^{d}$ be a bounded measurable set with $\lambda(S)>0$. Then S tiles \mathbb{R}^{d} by translation if and only if S is spectral. The spectral sets and tiles coincide in \mathbb{R}^{d}.

Theorem (Fuglede '74)

- If $S \subset \mathbb{R}^{d}$ is a tile whose tiling partner is a lattice, then S is spectral.
- If $S \subset \mathbb{R}^{d}$ is spectral with spectrum which is a lattice, then S tiles \mathbb{R}^{d}.
- Disc and triangle in \mathbb{R}^{2} is neither spectral, nor a tile.

Conjecture (Fuglede's conjecture on finite abelian groups) Let G be a finite abelian group and $S \subset G$. Then S is a spectral if and only if S is a tile.

Fuglede's conjecture in \mathbb{R}^{d} : Spectral \Rightarrow Tile direction

The conjecture has been disproved.
Theorem

- Tao '04: There is a spectral set of size 6 in \mathbb{Z}_{3}^{5}, hence Fuglede's conjecture is not true in \mathbb{R}^{d}, if $d \geqslant 5$.
- Matolcsi '05: There is a spectral set of size 6 in \mathbb{Z}_{3}^{4}, hence Fuglede's conjecture is not even true in \mathbb{R}^{4}.
- Kolountzakis-Matolcsi '06: There is a spectral set of size 6 in \mathbb{Z}_{8}^{3}, hence Fuglede's conjecture is not even true in \mathbb{R}^{3}.

For convex domains positive result is true by Lev and Matolcsi '22.
Theorem
Fuglede's conjecture holds on convex domains of \mathbb{R}^{d}.

Tile \Rightarrow Spectral direction

Lagarias and Wang '97 posed the following conjecture.
Conjecture (Universal Spectral Set Conjecture (USSC))
If a set S tiles a group with tiling partners T_{1}, \ldots, T_{n}, then they are spectral and they have a common spectrum.

Theorem

- Kolounztakis-Matolcsi '05: In \mathbb{Z}_{6}^{5} USSC fails. This implies that Tile \Rightarrow Spectral direction fails $(\mathbf{T} \rightarrow \mathbf{S})$ in $\mathbb{R}^{d}(d \geqslant 5)$.
- Farkas-Révész '06: In \mathbb{Z}_{6}^{4} USSC fails. This implies $\mathbf{T} \rightarrow \mathbf{S}$ in \mathbb{R}^{4}.
- Farkas-Matolcsi-Móra '06: In \mathbb{Z}_{24}^{3} USSC fails. This implies $\mathbf{T} \rightarrow \mathbf{S}$ in \mathbb{R}^{3}.

Open questions

Open Question
Does Fuglede's conjecture hold in \mathbb{R} and \mathbb{R}^{2} ?
The question on \mathbb{R} is closely connected to analogue question on cyclic groups; many subcases are known.
The question on \mathbb{R}^{2} is widely open; a few subcases are known.
Open Question
What are those finite abelian groups where Fuglede's conjecture holds?

Fuglede's conjecture on finite Abelian groups

Conjecture (Fuglede's conjecture on finite Abelian groups)
Let S tiles G by translation if and only if the functions on S has an orthogonal basis of characters of G.
Every counterexample mentioned is based on the following. If we have a counterexample on a finite abelian group with d generators, then it can be extended to a counterexample in \mathbb{Z}^{d} and blow it up to one in \mathbb{R}^{d}.
Denoting S $-\mathbf{T}(G)$ (resp. $\mathbf{T}-\mathbf{S}(G)$), if the Spectral \Rightarrow Tile (resp. Tile \Rightarrow Spectral) direction of Fuglede's conjecture holds in G. We have the following implication:

$$
\begin{aligned}
& \mathbf{T}-\mathbf{S}\left(\mathbb{R}^{d}\right) \Longrightarrow \mathbf{T}-\mathbf{S}\left(\mathbb{Z}^{d}\right) \Longrightarrow \mathbf{T}-\mathbf{S}\left(G_{d}\right), \\
& \mathbf{S}-\mathbf{T}\left(\mathbb{R}^{d}\right) \Longrightarrow \mathbf{S}-\mathbf{T}\left(\mathbb{Z}^{d}\right) \Longrightarrow \mathbf{S}-\mathbf{T}\left(G_{d}\right),
\end{aligned}
$$

where G_{d} can be any Abelian group of d generators.

One dimensional case

For $\mathbf{T}-\mathbf{S}$ direction we can say more in the one dimensional case. The following was presented by Dutkay and Lai.

$$
\mathbf{T}-\mathbf{S}(\mathbb{R}) \Longleftrightarrow \mathbf{T}-\mathbf{S}(\mathbb{Z}) \Longleftrightarrow \mathbf{T}-\mathbf{S}\left(\mathbb{Z}_{\mathbb{N}}\right)
$$

Conjecture

$$
\mathbf{S}-\mathbf{T}(\mathbb{R}) \Longleftrightarrow \mathbf{S}-\mathbf{T}(\mathbb{Z}) \Longleftrightarrow \mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{\mathbb{N}}\right)
$$

Cyclic group case I.

I just summarized the top results in each direction, but many of them has a longer history.

Theorem
Fuglede's conjecture holds in the following groups:

- $\mathbb{Z}_{p^{n} q^{m}}$, where p and q are distinct primes. $n \in \mathbb{N}, 0 \leqslant m \leqslant 6 \in \mathbb{N}$ (R. Malikiosis, 2022),
- $\mathbb{Z}_{p q r s}$, where p, q, r and s are distinct primes. (GK, R.Malikiosis, G. Somlai, M. Vizer, 2022),
- $\mathbb{Z}_{p^{n} q r}$, where p, q and r are distinct primes, $n \in \mathbb{N}$. (T. Zhang, 2023).

Cyclic group case II.

Theorem
Every tile is spectral in

- $\mathbb{Z}_{p^{n} q^{m}}$, where p are q are distinct primes (E. Coven, A. Meyerovitz, 1999),
- $\mathbb{Z}_{p_{1}^{n} p_{2} \ldots p_{k}}$, where p_{i} are distinct primes for all $1 \leqslant i \leqslant k$ (R. Malikiosis, 2022),
- $\mathbb{Z}_{p^{2} q^{2} r^{2}}$, where p, q and r are distinct primes (I. Londner, I. Laba, 2023).

Theorem
Fuglede's conjecture holds in $\mathbb{Z}_{p^{2} q^{2} r}$ if $r>p^{2} q^{2}$ (T. Fallon, $G K, A$. Mayeli, G. Somlai, 2023+).

Mask polynomial

The mask polynomial of S on a cyclic group \mathbb{Z}_{N} is defined as $m_{S}(x)=\sum_{s \in S} x^{s}$ in $\mathbb{Z}[x] /\left(x^{N}-1\right)$.

Proposition

If $k \mid N$ and a character of order k vanishes on $S \subseteq \mathbb{Z}_{N}$, i.e., $\sum_{x \in S} \chi(x)=0$, then every character of order k vanishes on S, i.e. $\Phi_{k} \mid m_{S}$.

Mask polynomial

The mask polynomial of S on a cyclic group \mathbb{Z}_{N} is defined as $m_{S}(x)=\sum_{s \in S} x^{s}$ in $\mathbb{Z}[x] /\left(x^{N}-1\right)$.

Proposition

If $k \mid N$ and a character of order k vanishes on $S \subseteq \mathbb{Z}_{N}$, i.e., $\sum_{x \in S} \chi(x)=0$, then every character of order k vanishes on S, i.e. $\Phi_{k} \mid m_{S}$.
Our aim is to understand which divisibility relations hold for spectral sets:
Every element $0 \neq x \in S-S$ of a spectral set S implies a divisibility condition.
We notice that $\Phi_{p^{k_{1}}} \ldots \Phi_{p^{k_{i}}} \mid m_{S}$ implies $p^{i}| | S \mid$ for every prime p and $k_{i} \in \mathbb{N}, i \in \mathbb{N}$.

Coven-Meyerowitz properties

Let H_{S} be the set of prime powers p^{a} dividing N such that $\Phi_{p^{a}}(x) \mid m_{S}(x)$.
(T1) $m_{S}(1)=|S|=\prod_{d \in H_{S}} \Phi_{d}(1)$.
(T2) For pairwise relative prime elements s_{i} of $H_{S}, \Phi_{\prod s_{i}} \mid m_{s}$.

Coven-Meyerowitz properties

Let H_{S} be the set of prime powers p^{a} dividing N such that $\Phi_{p^{a}}(x) \mid m_{S}(x)$.
(T1) $m_{S}(1)=|S|=\prod_{d \in H_{S}} \Phi_{d}(1)$.
(T2) For pairwise relative prime elements s_{i} of $H_{S}, \Phi_{\prod s_{i}} \mid m_{S}$.
Theorem

- (Coven-Meyerowitz) If the properties (T1) and (T2) hold for m_{S}, then S tiles \mathbb{Z}.
- If the size of a tile is $p^{n} q^{m}$, then (T1) and (T2) hold.
- (Łaba) If (T1) and (T2) hold for m_{S}, then S is a spectral set.

Corollary

Every tile is spectral in $\mathbb{Z}_{p^{n} q^{m}}(n, m \in \mathbb{N})$.

Reduction of the problem

Lemma

Suppose that S be a spectral set. Then the followings hold true.

- WLOG we can assume that $0 \in S$ and $0 \in \Lambda$.
- If S is contained in a subgroup H of G, where $\mathbf{S}-\mathbf{T}(H)$ holds, then S is a tile.
- If Λ is contained in a subgroup H of G, where $\mathbf{S}-\mathbf{T}(H)$ holds, then S is a tile.

Lemma

If S is the union of \mathbb{Z}_{p} cosets, then S tiles G.

Condition on r

The following fact is from Ruxi Shi (Fourier bases 2018 meeting, Crete)

Lemma

Let S be a spectral set in \mathbb{Z}_{N}. Assume that for every divisor $d \mid N$ we have $\mathbf{S}-\mathbf{T}\left(\mathbb{Z}_{d}\right)$. Suppose that for a prime $r \mid N$ and $r \nmid|S|$ the following implication holds

$$
\Phi_{m r}\left|m_{S} \Longrightarrow \Phi_{m}\right| m_{S}
$$

whenever $m \mid N$ is coprime to p. Then S is a tile.
Otherwise we get the following.
Lemma
Let $r \mid N$ be a prime and $m \mid N$ is such that $\operatorname{gcd}(m, r)=1$ and $\Phi_{m r} \mid m_{S}$ but $\Phi_{m} \nmid m_{S}$. Then each $\mathbb{Z}_{\frac{N}{r}}$ coset contains at least one point of S. Thus $|S| \geqslant r$.
If further $r>p^{2} q^{2}$, then $\Phi_{r} \mid m_{\Lambda}$. Hence $r||S|$.

Sketch of the proof

Theorem

Every spectral set of $\mathbb{Z}_{p^{2} q^{2} r}$ tiles if $r \geqslant p^{2} q^{2}$.
We distinguish cases according the divisors of $p^{2} q^{2} r$. We say that

$$
d \||S|, \text { if } \operatorname{gcd}\left(p^{2} q^{2} r,|S|\right)=d
$$

By this reasons we distinguish three cases.

- Small sets: $d|||S|$, where $r \nmid d$: These cases are excluded.
- Middle size sets: r || |S|, pr || |S|, qr || |S|, or pqr || |S|.
- Large sets: $p^{2} r\left\||S|, q^{2} r\right\||S|, p^{2} q r| ||S|, p q^{2} r \||S|$, or $p^{2} q^{2} r \||S|$ (also $p^{2} q^{2}| ||S|$): Pigeonhole principle for the cardinality of the set implies strict role how S should look like.

Middle sets I.: $\bmod p$ method

Lemma

If $n=p^{k} m$, where p is a prime and $p \nmid m$, then

$$
\Phi_{n} \mid m_{S} \text { in } \mathbb{Z}[x] \Longrightarrow \Phi_{m} \mid m_{S} \text { in } \mathbb{Z}_{p}[x] .
$$

Lemma

Let $n=p^{k} m$, where p is a prime and $p \nmid m$, and S is a subset of \mathbb{Z}_{n}. Then the following implication holds. If

$$
\begin{equation*}
\Phi_{d} \mid m_{S} \text { in } \mathbb{Z}_{p}[x] \quad \forall d \mid m \tag{1}
\end{equation*}
$$

then $|S|=k m+l p$ for nonnegative $k, l \in \mathbb{Z}$.

Middle sets II.: Main strategy

We have $\Phi_{r} \mid m_{\Lambda}$. We assume pqr $|||S|$ (the most problematic case).

Φ_{p} or	$\Phi_{p q}$	or	$\Phi_{p q^{2}} \mid m_{\Lambda}$	$\Longrightarrow \Phi_{p} \mid m_{\Lambda}$ in $\mathbb{Z}_{q}[x]$
$\Phi_{p r}$ or	$\Phi_{p q r}$	or	$\Phi_{p q^{2} r} \mid m_{\Lambda}$	$\Longrightarrow \Phi_{p r} \mid m_{\Lambda}$ in $\mathbb{Z}_{q}[x]$
$\Phi_{p^{2}}$ or	$\Phi_{p^{2} q}$	or	$\Phi_{p^{2} q^{2}} \mid m_{\Lambda}$	$\Longrightarrow \Phi_{p^{2}} \mid m_{\Lambda}$ in $\mathbb{Z}_{q}[x]$
$\Phi_{p^{2} r}$	or	$\Phi_{p^{2} q r}$	or	$\Phi_{p^{2} q^{2} r} \mid m_{\Lambda}$

Table: System of divisibility relations
Now we apply Lemma: $|\Lambda|=|S|=k p^{2} r+\mid q$, for some $0 \leqslant k, l \in \mathbb{N}$.

- If $k \geqslant 1$ and $I \geqslant 1$, then S is large.
- If $I=0$, the S is a tile or large.
- If $k=0$, then $S \cap\left(x+\mathbb{Z}_{q^{2}}\right)$ can be: \varnothing, a \mathbb{Z}_{q} coset, or a full coset representative system of \mathbb{Z}_{q} in $\mathbb{Z}_{q^{2}}$. By cardinality, each nonempty intersection is of one type. Similarly idea for p implies strict rules for S, and hence S tiles.

Middle sets III.: Geometric argument for the excluded cases

If this system of divisibility relations does not hold, then at least a row of conditions fails simultaneously. For instance,

$$
\Phi_{p} \nmid m_{\Lambda} \text { and } \Phi_{p q} \nmid m_{\Lambda} \text { and } \Phi_{p q^{2}} \nmid m_{\Lambda} .
$$

In each $\mathbb{Z}_{p q^{2}}$ coset at most one $\mathbb{Z}_{q^{2}}$ coset contain elements of S.

$$
\left|S \cap\left(x+\mathbb{Z}_{q^{2}}\right)\right| \leqslant q \Longrightarrow\left|S \cap\left(x+\mathbb{Z}_{p q^{2}}\right)\right| \leqslant q \Longrightarrow\left|S \cap \mathbb{Z}_{p^{2} q^{2} r}\right| \leqslant p q r .
$$

Since $p q r||S|$ we have $| S \mid=p q r$ and all \leqslant is $=$. We obtain that each $\mathbb{Z}_{p q^{2}}$ coset contains exactly one $\mathbb{Z}_{q^{2}}$ coset having q elements of S of a given type. Hence S is a tile.

Thank you for your attention!

End

