Overview of Fuglede's conjecture on cyclic groups

Gergely Kiss Alfréd Rényi Institute of Matematics (based on joint work with T. Fallon, A. Mayeli, G. Somlai)

Harmonic and Spectral Analysis 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Tiling versus Spectrality

Let G be a locally compact abelian group and \widehat{G} denotes its dual. Let μ denote the Haar measure on G and let $S \subseteq G$ be a subset with $0 < \mu(S) < \infty$.

- A set Λ ⊂ Ĝ is called the **spectrum** of S, if the characters {λ}_{λ∈Λ} gives an orthogonal basis of L²(S). If there exists such a set S, then S is called a **spectral** set.
- S is called a tile of G, if there exists a set T ⊆ G such that up to a set of measure zero every element of G can be uniquely written of the form s + t, where s ∈ S, t ∈ T. This we denote by S + T = G.

Fuglede's conjecture and his results

Conjecture (Fuglede '74)

Let $S \subset \mathbb{R}^d$ be a bounded measurable set with $\lambda(S) > 0$. Then S tiles \mathbb{R}^d by translation if and only if S is spectral. The spectral sets and tiles coincide in \mathbb{R}^d .

Theorem (Fuglede '74)

- If S ⊂ ℝ^d is a tile whose tiling partner is a lattice, then S is spectral.
- If S ⊂ ℝ^d is spectral with spectrum which is a lattice, then S tiles ℝ^d.
- Disc and triangle in \mathbb{R}^2 is neither spectral, nor a tile.

Conjecture (Fuglede's conjecture on finite abelian groups) Let G be a finite abelian group and $S \subset G$. Then S is a spectral if and only if S is a tile. Fuglede's conjecture in \mathbb{R}^d : Spectral \Rightarrow Tile direction

The conjecture has been disproved.

Theorem

- Tao '04: There is a spectral set of size 6 in Z⁵₃, hence Fuglede's conjecture is not true in ℝ^d, if d ≥ 5.
- ► Matolcsi '05: There is a spectral set of size 6 in Z⁴₃, hence Fuglede's conjecture is not even true in ℝ⁴.
- Kolountzakis-Matolcsi '06: There is a spectral set of size 6 in \mathbb{Z}_8^3 , hence Fuglede's conjecture is not even true in \mathbb{R}^3 .

For convex domains positive result is true by Lev and Matolcsi '22.

Theorem

Fuglede's conjecture holds on convex domains of \mathbb{R}^d .

$\mathsf{Tile} \Rightarrow \mathsf{Spectral} \ \mathsf{direction}$

Lagarias and Wang '97 posed the following conjecture.

Conjecture (Universal Spectral Set Conjecture (USSC)) If a set S tiles a group with tiling partners T_1, \ldots, T_n , then they are spectral and they have a common spectrum.

Theorem

- Kolounztakis-Matolcsi '05: In Z₆⁵ USSC fails. This implies that Tile⇒Spectral direction fails (T→ S) in R^d (d ≥ 5).
- ▶ Farkas-Révész '06: In \mathbb{Z}_6^4 USSC fails. This implies $\mathbf{T} \twoheadrightarrow \mathbf{S}$ in \mathbb{R}^4 .
- ▶ Farkas-Matolcsi-Móra '06: In \mathbb{Z}^3_{24} USSC fails. This implies $T \twoheadrightarrow S$ in \mathbb{R}^3 .

Open questions

Open Question

Does Fuglede's conjecture hold in \mathbb{R} and \mathbb{R}^2 ?

The question on $\mathbb R$ is closely connected to analogue question on cyclic groups; many subcases are known.

The question on \mathbb{R}^2 is widely open; a few subcases are known.

Open Question

What are those finite abelian groups where Fuglede's conjecture holds?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fuglede's conjecture on finite Abelian groups

Conjecture (Fuglede's conjecture on finite Abelian groups) Let S tiles G by translation if and only if the functions on S has an orthogonal basis of characters of G.

Every counterexample mentioned is based on the following. If we have a counterexample on a finite abelian group with d generators, then it can be extended to a counterexample in \mathbb{Z}^d and blow it up to one in \mathbb{R}^d .

Denoting $\mathbf{S} - \mathbf{T}(G)$ (resp. $\mathbf{T} - \mathbf{S}(G)$), if the *Spectral* \Rightarrow *Tile* (resp. *Tile* \Rightarrow *Spectral*) direction of Fuglede's conjecture holds in *G*. We have the following implication:

$$\mathbf{T} - \mathbf{S}(\mathbb{R}^d) \Longrightarrow \mathbf{T} - \mathbf{S}(\mathbb{Z}^d) \Longrightarrow \mathbf{T} - \mathbf{S}(G_d),$$

$$\mathbf{S} - \mathbf{T}(\mathbb{R}^d) \Longrightarrow \mathbf{S} - \mathbf{T}(\mathbb{Z}^d) \Longrightarrow \mathbf{S} - \mathbf{T}(\mathcal{G}_d),$$

where G_d can be any Abelian group of d generators.

For $\mathbf{T} - \mathbf{S}$ direction we can say more in the one dimensional case. The following was presented by Dutkay and Lai.

$$\mathbf{T}-\mathbf{S}(\mathbb{R}) \Longleftrightarrow \mathbf{T}-\mathbf{S}(\mathbb{Z}) \Longleftrightarrow \mathbf{T}-\mathbf{S}(\mathbb{Z}_{\mathbb{N}}).$$

Conjecture

$$\textbf{S}-\textbf{T}(\mathbb{R}) \Longleftrightarrow \textbf{S}-\textbf{T}(\mathbb{Z}) \Longleftrightarrow \textbf{S}-\textbf{T}(\mathbb{Z}_{\mathbb{N}}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Cyclic group case I.

I just summarized the top results in each direction, but many of them has a longer history.

Theorem

Fuglede's conjecture holds in the following groups:

- ▶ $\mathbb{Z}_{p^nq^m}$, where p and q are distinct primes. $n \in \mathbb{N}, 0 \leq m \leq 6 \in \mathbb{N}$ (R. Malikiosis, 2022),
- ▶ Z_{pqrs}, where p, q, r and s are distinct primes. (GK, R.Malikiosis, G. Somlai, M. Vizer, 2022),
- ▶ \mathbb{Z}_{p^nqr} , where p, q and r are distinct primes, $n \in \mathbb{N}$. (*T. Zhang*, 2023).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Cyclic group case II.

Theorem

Every tile is spectral in

- ℤ_{pⁿq^m}, where p are q are distinct primes (E. Coven, A. Meyerovitz, 1999),
- Z_{p₁ⁿp₂...p_k}, where p_i are distinct primes for all 1 ≤ i ≤ k (R. Malikiosis, 2022),
- Z_{p²q²r²}, where p, q and r are distinct primes (I. Londner, I. Laba, 2023).

Theorem

Fuglede's conjecture holds in $\mathbb{Z}_{p^2q^2r}$ if $r > p^2q^2$ (T. Fallon, GK, A. Mayeli, G. Somlai, 2023+).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Mask polynomial

The mask polynomial of S on a cyclic group \mathbb{Z}_N is defined as $m_S(x) = \sum_{s \in S} x^s$ in $\mathbb{Z}[x]/(x^N - 1)$.

Proposition

If $k \mid N$ and a character of order k vanishes on $S \subseteq \mathbb{Z}_N$, i.e., $\sum_{x \in S} \chi(x) = 0$, then every character of order k vanishes on S, i.e. $\Phi_k \mid m_S$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Mask polynomial

The mask polynomial of S on a cyclic group \mathbb{Z}_N is defined as $m_S(x) = \sum_{s \in S} x^s$ in $\mathbb{Z}[x]/(x^N - 1)$.

Proposition

If $k \mid N$ and a character of order k vanishes on $S \subseteq \mathbb{Z}_N$, i.e., $\sum_{x \in S} \chi(x) = 0$, then every character of order k vanishes on S, i.e. $\Phi_k \mid m_S$.

Our aim is to understand which divisibility relations hold for spectral sets:

Every element $0 \neq x \in S - S$ of a spectral set S implies a divisibility condition. We notice that $\Phi_{p^{k_1}} \dots \Phi_{p^{k_i}} \mid m_S$ implies $p^i \mid |S|$ for every prime p

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and $k_i \in \mathbb{N}, i \in \mathbb{N}$.

Coven-Meyerowitz properties

Let H_S be the set of prime powers p^a dividing N such that $\Phi_{p^a}(x) \mid m_S(x)$.

(T1)
$$m_{\mathcal{S}}(1) = |\mathcal{S}| = \prod_{d \in H_{\mathcal{S}}} \Phi_d(1).$$

(T2) For pairwise relative prime elements s_i of H_S , $\Phi_{\prod s_i} \mid m_S$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Coven-Meyerowitz properties

Let H_S be the set of prime powers p^a dividing N such that $\Phi_{p^a}(x) \mid m_S(x)$.

(T1) $m_{\mathcal{S}}(1) = |\mathcal{S}| = \prod_{d \in H_{\mathcal{S}}} \Phi_d(1).$

(T2) For pairwise relative prime elements s_i of H_S , $\Phi_{\prod s_i} \mid m_S$.

Theorem

- Coven-Meyerowitz) If the properties (T1) and (T2) hold for m_S, then S tiles Z.
- If the size of a tile is p^nq^m , then (T1) and (T2) hold.
- (Łaba) If (T1) and (T2) hold for m_S, then S is a spectral set.

Corollary

Every tile is spectral in $\mathbb{Z}_{p^nq^m}$ $(n, m \in \mathbb{N})$.

Reduction of the problem

Lemma

Suppose that S be a spectral set. Then the followings hold true.

- WLOG we can assume that $0 \in S$ and $0 \in \Lambda$.
- If S is contained in a subgroup H of G, where S − T(H) holds, then S is a tile.
- If ∧ is contained in a subgroup H of G, where S T(H) holds, then S is a tile.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma

If S is the union of \mathbb{Z}_p cosets, then S tiles G.

Condition on r

The following fact is from Ruxi Shi (Fourier bases 2018 meeting, Crete)

Lemma

Let S be a spectral set in \mathbb{Z}_N . Assume that for every divisor $d \mid N$ we have $\mathbf{S} - \mathbf{T}(\mathbb{Z}_d)$. Suppose that for a prime $r \mid N$ and $r \nmid |S|$ the following implication holds

$$\Phi_{mr} \mid m_S \Longrightarrow \Phi_m \mid m_S,$$

whenever $m \mid N$ is coprime to p. Then S is a tile. Otherwise we get the following.

Lemma

Let $r \mid N$ be a prime and $m \mid N$ is such that gcd(m, r) = 1 and $\Phi_{mr} \mid m_S$ but $\Phi_m \nmid m_S$. Then each $\mathbb{Z}_{\frac{N}{r}}$ coset contains at least one point of S. Thus $|S| \ge r$. If further $r > p^2q^2$, then $\Phi_r \mid m_\Lambda$. Hence $r \mid |S|$.

Sketch of the proof

Theorem

Every spectral set of $\mathbb{Z}_{p^2q^2r}$ tiles if $r \ge p^2q^2$.

We distinguish cases according the divisors of p^2q^2r . We say that

$$d || |S|$$
, if $gcd(p^2q^2r, |S|) = d$.

By this reasons we distinguish three cases.

- Small sets: $d \parallel |S|$, where $r \nmid d$: These cases are excluded.
- Middle size sets: $r \parallel |S|$, $pr \parallel |S|$, $qr \parallel |S|$, or $pqr \parallel |S|$.
- Large sets: p²r || |S|, q²r || |S|, p²qr || |S|, pq²r || |S|, or p²q²r || |S| (also p²q² || |S|): Pigeonhole principle for the cardinality of the set implies strict role how S should look like.

Middle sets I.: mod *p* method

Lemma
If
$$n = p^k m$$
, where p is a prime and $p \nmid m$, then

$$\Phi_n \mid m_S \text{ in } \mathbb{Z}[x] \Longrightarrow \Phi_m \mid m_S \text{ in } \mathbb{Z}_p[x].$$

Lemma

÷.

Let $n = p^k m$, where p is a prime and $p \nmid m$, and S is a subset of \mathbb{Z}_n . Then the following implication holds. If

$$\Phi_d \mid m_S \text{ in } \mathbb{Z}_p[x] \quad \forall d \mid m, \tag{1}$$

then |S| = km + lp for nonnegative $k, l \in \mathbb{Z}$.

Middle sets II.: Main strategy

We have $\Phi_r \mid m_{\Lambda}$. We assume $pqr \mid |S|$ (the most problematic case).

Table: System of divisibility relations

Now we apply Lemma: $|\Lambda| = |S| = kp^2r + lq$, for some $0 \le k, l \in \mathbb{N}$.

- If $k \ge 1$ and $l \ge 1$, then S is large.
- If I = 0, the S is a tile or large.
- If k = 0, then S ∩ (x + Z_{q²}) can be: Ø, a Z_q coset, or a full coset representative system of Z_q in Z_{q²}. By cardinality, each nonempty intersection is of one type. Similarly idea for p implies strict rules for S, and hence S tiles.

Middle sets III.: Geometric argument for the excluded cases

If this system of divisibility relations does not hold, then at least a row of conditions fails simultaneously. For instance,

$$\Phi_p \nmid m_{\Lambda}$$
 and $\Phi_{pq} \nmid m_{\Lambda}$ and $\Phi_{pq^2} \nmid m_{\Lambda}$.

In each \mathbb{Z}_{pq^2} coset at most one \mathbb{Z}_{q^2} coset contain elements of S.

$$|S \cap (x + \mathbb{Z}_{q^2})| \leq q \Longrightarrow |S \cap (x + \mathbb{Z}_{pq^2})| \leq q \Longrightarrow |S \cap \mathbb{Z}_{p^2q^2r}| \leq pqr.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Since $pqr \mid |S|$ we have |S| = pqr and all \leq is =. We obtain that each \mathbb{Z}_{pq^2} coset contains exactly one \mathbb{Z}_{q^2} coset having q elements of S of a given type. Hence S is a tile.

Thank you for your attention!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

End