Moment and derivations on hypergroups (joint work with Eszter Gselmann and László Székelyhidi)

 Żywilla FechnerInstitute of Mathematics, Lodz University of Technology
Harmonic and Spectral Analysis
Łódź, 04-06.10.2023

Agenda

Motivation

Moment functions

Moment function of higher rank on groups

Towards hypergroup settings

Examples

References

Expectation

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X: \Omega \rightarrow \mathbb{R}$ be an integrable random variable. Then the quantity

$$
\mathbb{E}[X]=\int_{\Omega} X(\omega) d \mathbb{P}(\omega)
$$

is called the expectation of X. If $\mu_{X}: \mathcal{B} \rightarrow \mathbb{R}$ is the law of a random variable X, i.e.

$$
\mu_{X}(B):=\mathbb{P}(\{\omega \in \Omega: X(\omega) \in B\}), \quad B \in \mathcal{B}(\mathbb{R})
$$

then the expectation is given by

$$
\mathbb{E}[X]=\int_{\mathbb{R}} x^{1} d \mu_{x}(x)
$$

Variance

Assume now that $X: \Omega \rightarrow \mathbb{R}$ be a square integrable random variable. Then the quantity

$$
\begin{aligned}
\operatorname{Var}[X] & =\int_{\Omega}[X(\omega)-\mathbb{E}[X]]^{2} d \mathbb{P}(\omega) \\
& =\int_{\Omega} X(\omega)^{2} d \mathbb{P}(\omega)-\mathbb{E}[X]^{2}
\end{aligned}
$$

is called the variance of X. Then

$$
\operatorname{Var}[X]=\int_{\mathbb{R}} x^{2} d \mu_{X}(x)-\left[\int_{\mathbb{R}} x^{1} d \mu_{X}(x)\right]^{2},
$$

where μ_{X} denotes the law of a random variable X.

Properties

Observe now that functions $g_{1}, g_{2}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g_{1}(x)=x^{1} \quad g_{2}(x)=x^{2}
$$

satisfy

$$
g_{1}(x+y)=g_{1}(x)+g_{1}(y)
$$

and

$$
g_{2}(x+y)=g_{2}(x)+2 g_{1}(x) g_{1}(y)+g_{2}(y) .
$$

Classical moment problem

For a given sequence $\left(s_{n}\right)_{n \in \mathbb{N}_{0}}$ of real numbers find the neccesarily and sufficient conditions for the existence of a measure μ on $[0,+\infty)$ such that

$$
s_{n}=\int_{0}^{\infty} x^{n} \mu(x), \quad n \in \mathbb{N}_{0} .
$$

Sequence of moment functions

Let now $g_{i}: \mathbb{R} \rightarrow \mathbb{R}$ for $i=0,1, \ldots, N$ be given by

$$
g_{0}(x+y)=g_{0}(x) g_{0}(y)
$$

and

$$
\int_{\mathbb{R}} g_{k}(z) d\left(\delta_{x} * \delta_{y}\right)=g_{k}(x+y)=\sum_{i=0}^{k}\binom{k}{i} g_{i}(x) g_{k-i}(y),
$$

where δ_{x} is the Dirac measure concentrated at the point x and

$$
\delta_{x} * \delta_{y}:=\delta_{x+y} .
$$

Then

$$
\mathbb{E}\left[X^{k}\right]=\mathbb{E}\left[g_{k}(X)\right]=\int_{\Omega} X^{k}(\omega) d \mathbb{P}(\omega)
$$

is k - moment of a r.v. X.

Moment function (of rank one)

Let N be a nonnegative integer. A function $\varphi: G \rightarrow \mathbb{C}$ is called a moment function of order N, if there exist functions $\varphi_{k}: G \rightarrow \mathbb{C}$ such that $\varphi_{0}=1, \varphi_{N}=\varphi$ and

$$
\begin{equation*}
\varphi_{k}(x+y)=\sum_{j=0}^{k}\binom{k}{j} \varphi_{j}(x) \varphi_{k-j}(y) \tag{1}
\end{equation*}
$$

for x, y in G and $k=0,1, \ldots, N$.
For higher rank: "changing indecies to multi-indecies" (much more compicated in practice)

Moment function vs functions of binomial type

In [1] it was shown that that if $(G,+)$ is a grupoid and R is a commutative ring, then functions $\varphi_{n}: G \rightarrow R$ satisfying (1) for each n in \mathbb{N} are of the form

$$
\begin{equation*}
\varphi_{n}(t)=n!\sum_{j_{1}+2 j_{2}+\cdots+n j_{n}=n} \prod_{k=1}^{n} \frac{1}{j_{k}!}\left(\frac{a_{k}(t)}{k!}\right)^{j_{k}} \tag{2}
\end{equation*}
$$

for all t in G and k in \mathbb{N} and arbitrary homomorphisms a_{k} from ($G,+$) into ($R,+$).

Bell polynomials

Let us consider the sequence of complex polynomials $\left(B_{n}\right)_{n \in \mathbb{N}}$ defined through the following recurrence: for each $t, t_{1}, t_{2}, \ldots, t_{n+1}$ in \mathbb{C} we let

$$
\begin{aligned}
B_{0}(t) & =1, \\
B_{n+1}\left(t_{1}, \ldots, t_{n+1}\right) & =\sum_{i=0}^{n}\binom{n}{i} B_{n-i}\left(t_{1}, \ldots, t_{n-i}\right) t_{i+1}
\end{aligned}
$$

for each n in \mathbb{N}. Alternatively, we can also use the double series expansion of the generating function

$$
\exp \left(\sum_{j=1}^{\infty} x_{j} \frac{t^{j}}{j!}\right)=\sum_{n=0}^{\infty} B_{n}\left(x_{1}, \ldots, x_{n}\right) \frac{t^{n}}{n!} .
$$

We call B_{n} the $n^{\text {th }}$ complete (exponential) Bell polynomial.

Theorem (Ż.F., E. Gselmann and L. Székelyhidi [4])

Let G be a commutative group, r a positive integer, and for each α in \mathbb{N}^{r}, let $f_{\alpha}: G \rightarrow \mathbb{C}$ be a function. If the sequence of functions $\left(f_{\alpha}\right)_{\alpha \in \mathbb{N}^{r}}$ forms a generalized moment sequence of rank r, then there exists an exponential $m: G \rightarrow \mathbb{C}$ and a sequence of complex-valued additive functions $a=\left(a_{\alpha}\right)_{\alpha \in \mathbb{N}^{r}}$ such that for every multi-index α in \mathbb{N}^{r} and x in G we have

$$
\begin{equation*}
f_{\alpha}(x)=B_{\alpha}(a(x)) m(x) . \tag{3}
\end{equation*}
$$

Measure algebra as $\mathcal{M}_{c}(X)=(\mathcal{C}(X))^{*}$

Let X be a commutative (hyper)group, let $\mathcal{C}(X)=\{f: X \rightarrow \mathbb{C}: f$ is continuous $\}$. The dual $\mathcal{C}^{*}(X)$ can be identified with the measure algebra $\mathcal{M}_{c}(X)$ of X. The space $\mathcal{M}_{c}(X)$ of all compactly supported complex Borel measures on X with the addition and multiplication by complex numbers. The convolution of measures can be defined by

$$
\int_{X} f d(\mu * \nu)=\int_{X} \int_{X} f(x * y) d \mu(x) d \nu(y), \quad f \in \mathcal{C}(X) .
$$

The measure algebra as a module over the ring $\mathcal{C}(X)$: the action of φ in $\mathcal{C}(X)$ on $\mathcal{M}_{c}(X)$ is defined by the multiplication of the measure μ by φ defined as

$$
\langle\varphi \cdot \mu, f\rangle=\int_{X} f \varphi d \mu .
$$

Derivation

A derivation of the measure algebra usually defined as a continuous linear operator $D: \mathcal{M}_{c}(X) \rightarrow \mathcal{M}_{c}(X)$ satisfying the additional property

$$
\begin{equation*}
D(\mu * \nu)=D \mu * \nu+\mu * D \nu \tag{4}
\end{equation*}
$$

for each μ, ν in $\mathcal{M}_{c}(X)$. A modification: instead of linearity we require that D is a continuous module homomorphism of $\mathcal{M}_{c}(X)$ as a module over the ring of continuous functions $\mathcal{C}(X)$. In other words, besides (4) we assume that

$$
\begin{align*}
& D(\mu+\nu)=D \mu+D \nu \tag{5}\\
& D(\varphi \mu)=\varphi D \mu \tag{6}
\end{align*}
$$

holds for each μ, ν in $\mathcal{M}_{c}(X)$ and φ in $\mathcal{C}(X)$. Thus (5) and (6) means that D is a module homomorphism.

Higher order derivations

Suppose that r is a positive integer. The family $\left(D_{\alpha}\right)_{\alpha \in \mathbb{N}^{r}}$ of continuous module homomorphisms of $\mathcal{M}_{c}(X)$ is a higher order derivation of rank r if for each α in \mathbb{N}^{r} we have

$$
\begin{equation*}
D_{\alpha}(\mu * \nu)=\sum_{\beta \leq \alpha}\binom{\alpha}{\beta} D_{\beta} \mu * D_{\alpha-\beta} \nu, \quad \mu, \nu \in \mathcal{M}_{c}(X) \tag{7}
\end{equation*}
$$

The order of D_{α} is defined as $|\alpha|$. In particular, D_{0} satisfies

$$
\begin{equation*}
D_{0}(\mu * \nu)=D_{0} \mu * D_{0} \nu, \tag{8}
\end{equation*}
$$

that is, D_{0} is an algebra homomorphism and module homomorphism simultaneously. We call such a mapping a multiplicative module homomorphism.

Derivations vs moment functions

Theorem (Ż.F., E. Gselmann and L. Székelyhidi [5])

Let X be a commutative hypergroup and r a positive integer. The family $\left(D_{\alpha}\right)_{\alpha \in \mathbb{N}^{r}}$ of self-mappings on $\mathcal{M}_{c}(X)$ is a continuous higher order derivation of order r if and only if there exists a generalized moment function sequence $\left(\varphi_{\alpha}\right)_{\alpha \in \mathbb{N} r}$ of rank r such that

$$
\begin{equation*}
\left\langle D_{\alpha} \mu, f\right\rangle=\int_{X} f \cdot \varphi_{\alpha} d \mu \tag{9}
\end{equation*}
$$

holds for each μ in $\mathcal{M}_{c}(X), f$ in $\mathcal{C}(X)$ and α in \mathbb{N}^{r}.

Example

Let $G=\mathbb{R}$, and we consider the functions $\varphi_{k, \lambda}(x)=x^{k} e^{\lambda x}$ for k in \mathbb{N}, where x is in \mathbb{R} and λ is in \mathbb{C}. These functions form a generalized moment sequence of rank one as

$$
\begin{aligned}
\varphi_{n, \lambda}(x+y) & =(x+y)^{n} e^{\lambda(x+y)}=\sum_{k=0}^{n}\binom{n}{k} x^{k} e^{\lambda x} y^{n-k} e^{\lambda y} \\
& =\sum_{k=0}^{n}\binom{n}{k} \varphi_{k, \lambda}(x) \varphi_{n-k, \lambda}(y) .
\end{aligned}
$$

This moment function sequence generates the following higher order derivation on the space $\mathcal{M}_{c}(\mathbb{R})$:

$$
\left\langle D_{k} \mu, f\right\rangle=\int_{\mathbb{R}} x^{k} e^{\lambda x} f(x) d \mu(x) .
$$

Example

We have

$$
\begin{aligned}
\left\langle D_{k}(\psi \mu), f\right\rangle & =\int_{\mathbb{R}} x^{k} e^{\lambda x} f(x) \cdot \psi(x) d \mu(x) \\
& =\int_{\mathbb{R}} x^{k} e^{\lambda x} f(x) d(\psi \mu)(x)=\left\langle\psi D_{k}(\mu), f\right\rangle
\end{aligned}
$$

hence D_{k} is a module homomorphism for each $k=0,1, \ldots$ In particular, for $\lambda=0$

$$
\left\langle D_{k} \mu, 1\right\rangle=\int_{\mathbb{R}} x^{k} d \mu(x)
$$

which corresponds to the classical moments of the measures.

Remarks and perspectives

- Derivations: a survey by B. Ebanks [3] including the results of E.Gselmann, G.Kiss, C.Vincze [7] among others.
- Investigations: interplay between derivations, moment functions and exponential monomials.
- Examples of derivations on special types of hypergroups.

References

[1] J. Aczél, Functions of binomial type mapping groupoids into rings, Mathematische Zeitschrift, 154 (2), 1977, 115-124
[2] W. R. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups, de Gruyter Studies in Mathematics, vol. 20, Walter de Gruyter \& Co., Berlin, 1995.
[3] B. Ebanks, Functional equations characterizing derivations: a synthesis, Results in Mathematics, 73 (3), 2018
[4] Ż. F., E. Gselmann and L. Székelyhidi, Moment Functions on Groups, Results in Mathematics, 76 (4), art. 171 (2021)
[5] Ż. F., E. Gselmann and L. Székelyhidi, Endomorphisms and derivations of the measure algebra of commutative hypergroups, online first, Indagationes Math.
[6] E. Gselmann Notes on the characterization of derivations, Acta Sci. Math. (Szeged), 2012
[7] E. Gselmann, G.Kiss, C.Vincze, On functional equations characterizing derivations: methods and examples, Results in Mathematics, 73, 2018
[8] L. Székelyhidi, Functional Equations on Hypergroups, World Scientific Publishing Co. Pte. Ltd., New Jersey, London, 2012.
[9] L. Székelyhidi, L. Vajday A moment problem on some types of hypergroups, Ann. Funct. Anal. 3, 2012, $58-65$.

Thank you very much for your kind attention!

