A linear programming approach to Fuglede's conjecture in \mathbb{Z}_{p}^{3}

R. D. Malikiosis

October 4, 2023

Harmonic and Spectral Analysis 2023

Spectrality

$$f \in L^2(\Omega)$$
 $\int_{\Omega} e^{i(\lambda - \lambda') \cdot x} dx = 0, \quad \lambda \neq \lambda'$

Fuglede's Conjecture (1974)

 $\mathsf{Tiling} \Longleftrightarrow \mathsf{Spectrality} \text{ in } \mathbb{R}^d$

Fuglede's Conjecture (1974)

 $\mathsf{Tiling} \Longleftrightarrow \mathsf{Spectrality} \text{ in } \mathbb{R}^d$

Spectrality ⇒ Tiling (Tao '04)

Counterexample in $\mathbb{R}^5;$ follows from the abundance of 6×6 complex Hadamard matrices.

Fuglede's Conjecture (1974)

 $\mathsf{Tiling} \Longleftrightarrow \mathsf{Spectrality} \text{ in } \mathbb{R}^d$

Spectrality ⇒ Tiling (Tao '04)

Counterexample in \mathbb{R}^5 ; follows from the abundance of 6×6 complex Hadamard matrices.

This direction fails for $d \ge 3$ (Kolountzakis, Matolcsi '06).

Fuglede's Conjecture (1974)

Tiling \iff Spectrality in \mathbb{R}^d

Spectrality ⇒ Tiling (Tao '04)

Counterexample in \mathbb{R}^5 ; follows from the abundance of 6×6 complex Hadamard matrices.

This direction fails for $d \ge 3$ (Kolountzakis, Matolcsi '06).

Tiling⇒Spectrality (Kolountzakis, Matolcsi '06)

Counterexample in \mathbb{R}^5 ; also fails for $d \ge 3$ (Farkas, Matolcsi, Móra '06).

Fuglede's Conjecture (1974)

Tiling \iff Spectrality in \mathbb{R}^d

Spectrality⇒Tiling (Tao '04)

Counterexample in \mathbb{R}^5 ; follows from the abundance of 6×6 complex Hadamard matrices.

This direction fails for $d \ge 3$ (Kolountzakis, Matolcsi '06).

Tiling⇒Spectrality (Kolountzakis, Matolcsi '06)

Counterexample in \mathbb{R}^5 ; also fails for $d \ge 3$ (Farkas, Matolcsi, Móra '06).

Observation:

a counterexample of $S \Rightarrow T$ or $T \Rightarrow S$ in a finite Abelian group with d generators can be lifted to a counterexample in \mathbb{R}^d

Fuglede's Conjecture (1974)

Tiling \iff Spectrality in \mathbb{R}^d

Spectrality⇒Tiling (Tao '04)

Counterexample in \mathbb{R}^5 ; follows from the abundance of 6×6 complex Hadamard matrices.

This direction fails for $d \ge 3$ (Kolountzakis, Matolcsi '06).

Tiling⇒Spectrality (Kolountzakis, Matolcsi '06)

Counterexample in \mathbb{R}^5 ; also fails for $d \ge 3$ (Farkas, Matolcsi, Móra '06).

Observation:

a counterexample of $S \Rightarrow T$ or $T \Rightarrow S$ in a finite Abelian group with d generators can be lifted to a counterexample in \mathbb{R}^d

Fuglede's conjecture is still open for d = 1, 2. It is true for convex bodies (Lev, Matolcsi '22).

Let A be a subset of a finite Abelian group G. Then A tiles G by translations if and only if A is spectral.

Let A be a subset of a finite Abelian group G. Then A tiles G by translations if and only if A is spectral.

A tiles if there is another subset T (the *tiling complement of A*), such that each element of G can be expressed uniquely as a + t, with $a \in A$, $t \in T$. Notation: $A \oplus T = G$.

Let A be a subset of a finite Abelian group G. Then A tiles G by translations if and only if A is spectral.

A tiles if there is another subset T (the *tiling complement of A*), such that each element of G can be expressed uniquely as a + t, with $a \in A$, $t \in T$. Notation: $A \oplus T = G$.

A is spectral if there is a set of characters $B \subset \hat{G}$ that form an orthogonal basis on A.

Let A be a subset of a finite Abelian group G. Then A tiles G by translations if and only if A is spectral.

A tiles if there is another subset T (the *tiling complement of A*), such that each element of G can be expressed uniquely as a + t, with $a \in A$, $t \in T$. Notation: $A \oplus T = G$.

A is spectral if there is a set of characters $B \subset \hat{G}$ that form an orthogonal basis on A.

Results

- **()** If G has at least 10 generators, then $S \not\Rightarrow T$ (Ferguson, Sophanathan, '22)
- (a) If G has odd order and at least 4 generators, then $S \Rightarrow T$ (Aten et al. '17)
- \bigcirc If G has at most 2 generators, we only have positive results so far (many authors...)
- If $G = \mathbb{Z}_p^3$, then $T \Rightarrow S$ (Aten et al.)

 $\hat{G} = \{\xi : G \to \mathbb{C} : \xi(x + y) = \xi(x)\xi(y), \forall x, y \in G\}$. Since G finite, $\xi(x)$ is a root of unity.

 $\hat{G} = \{\xi : G \to \mathbb{C} : \xi(x + y) = \xi(x)\xi(y), \forall x, y \in G\}$. Since G finite, $\xi(x)$ is a root of unity.

Fourier transform

For $f: G
ightarrow \mathbb{C}$ define $\hat{f}: \hat{G}
ightarrow \mathbb{C}$ as

$$\mathsf{F}f(\xi) = \hat{f}(\xi) = \sum_{x \in G} f(x)\xi(-x) = \langle f, \xi \rangle$$

 $\hat{G} = \{\xi : G \to \mathbb{C} : \xi(x + y) = \xi(x)\xi(y), \forall x, y \in G\}$. Since G finite, $\xi(x)$ is a root of unity.

Fourier transform

For $f: G
ightarrow \mathbb{C}$ define $\hat{f}: \hat{G}
ightarrow \mathbb{C}$ as

$$\mathsf{F}f(\xi) = \hat{f}(\xi) = \sum_{x \in G} f(x)\xi(-x) = \langle f, \xi \rangle$$

Inverse Fourier transform: $f(x) = \frac{1}{|G|} \sum_{\xi \in \hat{G}} \hat{f}(\xi)\xi(x)$. Convolution: $f * g(x) = \sum_{y \in G} f(x - y)g(y)$. $\widehat{f * g} = \hat{f} \cdot \hat{g}$. Parseval: $\mathbf{U} = \frac{1}{\sqrt{|G|}}\mathbf{F}$ is unitary: $|G| \sum_{x \in G} |f(x)|^2 = \sum_{\xi \in \hat{G}} |\hat{f}(\xi)|^2$.

 $\hat{G} = \{\xi : G \to \mathbb{C} : \xi(x + y) = \xi(x)\xi(y), \forall x, y \in G\}$. Since G finite, $\xi(x)$ is a root of unity.

Fourier transform

For $f: G
ightarrow \mathbb{C}$ define $\hat{f}: \hat{G}
ightarrow \mathbb{C}$ as

$$\mathsf{F}f(\xi) = \hat{f}(\xi) = \sum_{x \in G} f(x)\xi(-x) = \langle f, \xi \rangle$$

Inverse Fourier transform: $f(x) = \frac{1}{|G|} \sum_{\xi \in \hat{G}} \hat{f}(\xi)\xi(x)$. Convolution: $f * g(x) = \sum_{y \in G} f(x - y)g(y)$. $\widehat{f * g} = \hat{f} \cdot \hat{g}$. Parseval: $\mathbf{U} = \frac{1}{\sqrt{|G|}}\mathbf{F}$ is unitary: $|G| \sum_{x \in G} |f(x)|^2 = \sum_{\xi \in \hat{G}} |\hat{f}(\xi)|^2$.

Restricting inner products on $A \subset G$:

$$\langle f,g\rangle_A = \sum_{x\in A} f(x)\overline{g(x)} = \langle f|_A,g|_A\rangle.$$

 $\xi,\psi\in \hat{G}$ are orthogonal on A if $\langle\xi,\psi
angle_A=0$ (Notation: $\xi\perp\psi$.)

Let $E \subset G$, such that $0 \in E$ and E = -E (forbidden set). We seek to maximize |B| such that $(B - B) \cap E = \{0\}$.

Let $E \subset G$, such that $0 \in E$ and E = -E (forbidden set). We seek to maximize |B| such that $(B - B) \cap E = \{0\}$.

Witness function

A function $h: G \to \mathbb{R}$ is called a *witness function* with respect to E if

(a) *h* is even and
$$h(x) \leq 0$$
, $\forall x \in G \setminus E$.

(b)
$$\hat{h} \ge 0$$
, $\hat{h}(0) > 0$.

Let $E \subset G$, such that $0 \in E$ and E = -E (forbidden set). We seek to maximize |B| such that $(B - B) \cap E = \{0\}$.

Witness function

A function $h: G \to \mathbb{R}$ is called a *witness function* with respect to E if

(a) *h* is even and
$$h(x) \leq 0$$
, $\forall x \in G \setminus E$.

(b)
$$\hat{h} \ge 0$$
, $\hat{h}(0) > 0$.

Theorem (Delsarte '72)

With B, E, h as above, it holds

$$|B| \leq |G| \cdot rac{h(0)}{\hat{h}(0)}.$$

Spectrum

 $B \subset \hat{G}$ is a set of orthogonal characters of $A \subset G$, if for every $\xi \neq \psi$, $\xi, \psi \in B$ we have

$$0 = \langle \xi, \psi \rangle_A = \sum_{x \in A} (\xi \psi^{-1})(x) = \hat{\mathbf{1}}_A(\xi \psi^{-1})$$

or equivalently,

$$B-B\subset Z(\hat{\mathbf{1}}_{A})\cup \{0\}.$$

If in addition |B| = |A|, then B is a spectrum of A (it always holds $|B| \le |A|$).

Spectrum

 $B \subset \hat{G}$ is a set of orthogonal characters of $A \subset G$, if for every $\xi \neq \psi$, $\xi, \psi \in B$ we have

$$\mathbf{0} = \langle \xi, \psi \rangle_{A} = \sum_{x \in A} (\xi \psi^{-1})(x) = \hat{\mathbf{1}}_{A}(\xi \psi^{-1})$$

or equivalently,

$$B-B\subset Z(\hat{\mathbf{1}}_A)\cup\{\mathbf{0}\}.$$

If in addition |B| = |A|, then B is a spectrum of A (it always holds $|B| \le |A|$).

If there is a witness $h: G \to \mathbb{R}$ for $E = G \setminus Z(\hat{\mathbf{1}}_A)$ such that

$$G|\cdot \frac{h(0)}{\hat{h}(0)} < |A|,$$

then A is *not* spectral.

Spectrum

 $B \subset \hat{G}$ is a set of orthogonal characters of $A \subset G$, if for every $\xi \neq \psi$, $\xi, \psi \in B$ we have

$$0 = \langle \xi, \psi \rangle_A = \sum_{x \in A} (\xi \psi^{-1})(x) = \hat{\mathbf{1}}_A(\xi \psi^{-1})$$

or equivalently,

$$B-B\subset Z(\hat{\mathbf{1}}_A)\cup\{\mathbf{0}\}.$$

If in addition |B| = |A|, then B is a spectrum of A (it always holds $|B| \le |A|$).

If there is a witness $h: G \to \mathbb{R}$ for $E = G \setminus Z(\hat{\mathbf{1}}_A)$ such that

$$|G|\cdot rac{h(0)}{\hat{h}(0)} < |A|$$

then A is *not* spectral.

Remark

 $h = \widehat{\mathbf{1}_A * \mathbf{1}_{-A}} = |\widehat{\mathbf{1}}_A|^2$ is a witness function for E which achieves equality, i. e. $|G| \cdot h(0)/\widehat{h}(0) = |A|$.

$$G = \mathbb{Z}_p^3$$

$$\langle x,y\rangle = x_1y_1 + x_2y_2 + x_3y_3.$$

$$G = \mathbb{Z}_p^3$$

$$\langle x,y\rangle = x_1y_1 + x_2y_2 + x_3y_3.$$

We write $x \perp y$ if $\langle x, y \rangle = 0$. It holds $\dim_{\mathbb{F}_p} x^{\perp} = 2$, if $x \neq O = (0, 0, 0)$.

$$G = \mathbb{Z}^3_p$$

$$\langle x,y\rangle = x_1y_1 + x_2y_2 + x_3y_3.$$

We write $x \perp y$ if $\langle x, y \rangle = 0$. It holds $\dim_{\mathbb{F}_p} x^{\perp} = 2$, if $x \neq O = (0, 0, 0)$. If *L* is a line through *O*, then *L*^{*} denotes the *punctured line* $L \setminus \{O\}$.

$$G = \mathbb{Z}^3_p$$

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

We write $x \perp y$ if $\langle x, y \rangle = 0$. It holds $\dim_{\mathbb{F}_p} x^{\perp} = 2$, if $x \neq O = (0, 0, 0)$.

If L is a line through O, then L^* denotes the *punctured line* $L \setminus \{O\}$.

Balanced (or ray-type) functions

A function $h: G \to \mathbb{C}$ is called *balanced* if it is constant on every punctured line (i. e. it is homogeneous of degree 0).

$$G = \mathbb{Z}^3_p$$

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

We write $x \perp y$ if $\langle x, y \rangle = 0$. It holds $\dim_{\mathbb{F}_p} x^{\perp} = 2$, if $x \neq 0 = (0, 0, 0)$.

If L is a line through O, then L^* denotes the *punctured line* $L \setminus \{O\}$.

Balanced (or ray-type) functions

A function $h: G \to \mathbb{C}$ is called *balanced* if it is constant on every punctured line (i. e. it is homogeneous of degree 0).

Balanced witness function

If h is a witness function for a union of lines E, then g is also a witness function for E, where

$$g(x) = rac{1}{p-1} \sum_{\lambda \in \mathbb{Z}_p^*} h(\lambda x)$$

is in addition a balanced function.

 $[x:y:z] = [\lambda x:\lambda y:\lambda z]$ for $\lambda \neq 0$. The affine plane is included in $\mathbf{P}\mathbb{F}_p^2$ via the map $(x,y) \mapsto [x:y:1]$; for z = 0 we get the line at infinity.

 $[x:y:z] = [\lambda x:\lambda y:\lambda z]$ for $\lambda \neq 0$. The affine plane is included in $\mathbf{P}\mathbb{F}_p^2$ via the map $(x,y) \mapsto [x:y:1]$; for z = 0 we get the line at infinity.

\mathbb{Z}_p^3	$\mathbf{P}\mathbb{F}_p^2$
punctured line	point
punctured plane	line

 $[x:y:z] = [\lambda x:\lambda y:\lambda z]$ for $\lambda \neq 0$. The affine plane is included in $\mathbf{P}\mathbb{F}_p^2$ via the map $(x,y) \mapsto [x:y:1]$; for z = 0 we get the line at infinity.

\mathbb{Z}_p^3	$\mathbf{P}\mathbb{F}_p^2$
punctured line	point
punctured plane	line

If S is a union of punctured lines in \mathbb{Z}_p^3 , then the corresponding set of points in $\mathbf{P}\mathbb{F}_p^2$ is denoted by \tilde{S} .

Fourier analysis on the finite projective plane

If L is a line through O, then:

$$\hat{\mathbf{1}}_{\mathcal{O}} = \mathbf{1}_{\mathbb{Z}_p^3}, \quad \hat{\mathbf{1}}_{\mathcal{L}} = p \mathbf{1}_{\mathcal{L}^\perp}, \quad \hat{\mathbf{1}}_{\mathcal{L}^*} = p \mathbf{1}_{\mathcal{L}^\perp} - \mathbf{1}_{\mathbb{Z}_p^3}$$

Fourier analysis on the finite projective plane

If L is a line through O, then:

$$\hat{\mathbf{1}}_O = \mathbf{1}_{\mathbb{Z}_p^3}, \hspace{1em} \hat{\mathbf{1}}_L = p \mathbf{1}_{L^\perp}, \hspace{1em} \hat{\mathbf{1}}_{L^*} = p \mathbf{1}_{L^\perp} - \mathbf{1}_{\mathbb{Z}_p^3}$$

Functions on projective plane

For
$$f : \mathbb{Z}_p^3 \to \mathbb{C}$$
 balanced, define $\tilde{f} : \mathbf{P}\mathbb{F}_p^2 \cup \{O\} \to \mathbb{C}$ as $\tilde{f}([x : y : z]) = f(x, y, z)$,
 $\tilde{f}(O) = f(O)$. The Fourier transform is defined to satisfy $\tilde{f} = \tilde{f}$.

Fourier analysis on the finite projective plane

If L is a line through O, then:

$$\hat{\mathbf{1}}_O = \mathbf{1}_{\mathbb{Z}_p^3}, \hspace{1em} \hat{\mathbf{1}}_L = p \mathbf{1}_{L^\perp}, \hspace{1em} \hat{\mathbf{1}}_{L^*} = p \mathbf{1}_{L^\perp} - \mathbf{1}_{\mathbb{Z}_p^3}$$

Functions on projective plane

For
$$f: \mathbb{Z}_p^3 \to \mathbb{C}$$
 balanced, define $\tilde{f}: \mathbf{P}\mathbb{F}_p^2 \cup \{O\} \to \mathbb{C}$ as $\tilde{f}([x:y:z]) = f(x, y, z)$,
 $\tilde{f}(O) = f(O)$. The Fourier transform is defined to satisfy $\tilde{f} = \hat{f}$.

Abusing notation, we write O = [0:0:0]. For $P = [x:y:z] \in \mathbf{P}\mathbb{F}_p^2$ define

$$\mathcal{P}^{\perp} = \Big\{ Q = [u:v:w] \in \mathbf{P}\mathbb{F}_p^2 : xu + yv + zw = 0 \Big\}.$$

$$\hat{\delta}_P = p \delta_{P\perp} + p \delta_O - \mathbf{1}, \quad \hat{\delta}_O = \mathbf{1}.$$

Definition

 $Z \subset \mathbf{P}\mathbb{F}_p^2$ is a *blocking set* if it intersects every line, but contains none.

Definition

 $Z \subset \mathbf{P}\mathbb{F}_p^2$ is a *blocking set* if it intersects every line, but contains none.

Facts:

- If Z is a blocking set, then so is Z^c .
- If $A \subset \mathbb{Z}_p^3$ is spectral, then $p \mid |A|$. If |A| = p or p^2 , then it tiles. If $|A| > p^2$, then $A = \mathbb{Z}_p^3$. Otherwise, |A| = pk, with 1 < k < p and

$$\widetilde{Z(\hat{\mathbf{1}}_A)} = \left\{ [x:y:z] \in \mathbf{P}\mathbb{F}_p^2 : \hat{\mathbf{1}}_A(x,y,z) = 0 \right\} = Z^c$$

is a blocking set, and so is $Z=\mathrm{supp}\hat{\mathbf{1}}_{A}$ (Fallon, Mayeli, Villano '19).

• Let Z' be the smallest blocking set such that $Z' \subset Z$. Then (Bruen, Thas '77),

 $|Z'| \le p\sqrt{p} + 1.$

Define

$$\tilde{h} = \delta_{Z'} + (|Z'| - p)\delta_O.$$

Define

$$\tilde{h} = \delta_{Z'} + (|Z'| - p)\delta_O.$$

h is a witness function for $E = \mathbb{Z}_p^3 \setminus Z(\hat{1}_A)$:

- The first condition $(h \leq 0 \text{ outside } E)$ is satisfied, as $\operatorname{supp} \tilde{h} \subset Z \cup \{O\}$.
- The second condition (*positivity of* \hat{h}) is satisfied:

$$\hat{\tilde{h}} = p \Biggl(\sum_{P \in Z'} \delta_{P^{\perp}} + |Z'| \delta_O - 1 \Biggr),$$

so that for $Q \in \mathbf{P}\mathbb{F}_p^2$

$$\hat{\tilde{h}}(Q) = pigg(\sum_{P\in Z'}\delta_{P^{\perp}}(Q)-1igg) = pigg(\sum_{P\in Z'}\delta_{Q^{\perp}}(P)-1igg) = p(|Z'\cap Q^{\perp}|-1) \geq 0$$

and $\hat{\tilde{h}}(O) = p(|Z'| - 1) > 0.$

Suppose that $B \subset \hat{G}$ is a (maximal) set of pairwise orthogonal characters on A. Delsarte's method with witness function h gives us

$$|B| \leq |G| \cdot \frac{h(0)}{\hat{h}(0)} = p^3 \cdot \frac{\tilde{h}(O)}{\hat{h}(O)} = p^3 \cdot \frac{|Z'| - p}{p(|Z'| - 1)} = p^2 \left(1 - \frac{p - 1}{|Z'| - 1}\right).$$

Suppose that $B \subset \hat{G}$ is a (maximal) set of pairwise orthogonal characters on A. Delsarte's method with witness function h gives us

$$|B| \le |G| \cdot \frac{h(0)}{\hat{h}(0)} = p^3 \cdot \frac{\tilde{h}(O)}{\hat{h}(O)} = p^3 \cdot \frac{|Z'| - p}{p(|Z'| - 1)} = p^2 \left(1 - \frac{p - 1}{|Z'| - 1}\right).$$

When is the latter $\langle |A| = pk$? Precisely when

$$k > p - \frac{p-1}{\sqrt{p}}.$$

Suppose that $B \subset \hat{G}$ is a (maximal) set of pairwise orthogonal characters on A. Delsarte's method with witness function h gives us

$$|B| \leq |G| \cdot \frac{h(0)}{\hat{h}(0)} = p^3 \cdot \frac{\tilde{h}(O)}{\hat{h}(O)} = p^3 \cdot \frac{|Z'| - p}{p(|Z'| - 1)} = p^2 \left(1 - \frac{p - 1}{|Z'| - 1}\right).$$

When is the latter $\langle |A| = pk$? Precisely when

$$k > p - rac{p-1}{\sqrt{p}}.$$

Theorem (M. '22)

If $A \subset \mathbb{Z}_p^3$ and

$$p^2 - p\sqrt{p} + \sqrt{p} < |A| < p^2,$$

then A is not spectral.

Suppose that $B \subset \hat{G}$ is a (maximal) set of pairwise orthogonal characters on A. Delsarte's method with witness function h gives us

$$|B| \leq |G| \cdot \frac{h(0)}{\hat{h}(0)} = p^3 \cdot \frac{\tilde{h}(O)}{\hat{h}(O)} = p^3 \cdot \frac{|Z'| - p}{p(|Z'| - 1)} = p^2 \left(1 - \frac{p - 1}{|Z'| - 1}\right).$$

When is the latter $\langle |A| = pk$? Precisely when

$$k > p - rac{p-1}{\sqrt{p}}.$$

Theorem (M. '22)

If $A \subset \mathbb{Z}_p^3$ and

$$p^2 - p\sqrt{p} + \sqrt{p} < |A| < p^2,$$

then A is not spectral.

Remark

- It takes care about \sqrt{p} multiples of p between 2p and (p-1)p.
- Previously known only for k = p 2 or p 1 (Fallon, Mayeli, Villano '19).

Work in progress - Open questions

() Could Z' be smaller? At any rate, not smaller than $\frac{3}{2}(p+1)$; in this case, if

$$p\cdot\frac{p^2+5p}{3p+1}<|A|$$

then A is not spectral, using the same method

- Ould Z intersect every line in more than one points? Z either intersects every line at 3 points at least, or the points of A are distributed in k parallel planes, each having exactly p points of A.
- If Z is a t-blocking set (i. e. it intersects every line at $\geq t$ points), then

$$\tilde{h} = \delta_{Z'} + (|Z'| - tp)\delta_O$$

is a witness function with respect to $E = \mathbb{Z}_p^3 \setminus Z(\hat{\mathbf{1}}_A)$, where Z' is a minimal *t*-blocking subset of Z. Applying Delsarte's method on *h* and using bounds on the size of minimal 3-blocking sets, yield that A is not spectral for $\approx \sqrt{3p}$ values of k.

Work in progress - Open questions

() Could Z' be smaller? At any rate, not smaller than $\frac{3}{2}(p+1)$; in this case, if

$$p\cdot\frac{p^2+5p}{3p+1}<|A|< p^2,$$

then A is not spectral, using the same method

- Ould Z intersect every line in more than one points? Z either intersects every line at 3 points at least, or the points of A are distributed in k parallel planes, each having exactly p points of A.
- If Z is a t-blocking set (i. e. it intersects every line at $\geq t$ points), then

$$\tilde{h} = \delta_{Z'} + (|Z'| - tp)\delta_O$$

is a witness function with respect to $E = \mathbb{Z}_{p}^{3} \setminus Z(\hat{\mathbf{1}}_{A})$, where Z' is a minimal *t*-blocking subset of Z. Applying Delsarte's method on *h* and using bounds on the size of minimal 3-blocking sets, yield that A is not spectral for $\approx \sqrt{3p}$ values of k.

Thank you!