A linear programming approach to Fuglede's conjecture in \mathbb{Z}_{p}^{3}

R. D. Malikiosis

October 4, 2023

Harmonic and Spectral Analysis 2023

Tiling

Spectrality

Fuglede's conjecture

Fuglede's Conjecture (1974)
Tiling \Longleftrightarrow Spectrality in \mathbb{R}^{d}

Fuglede's conjecture

Fuglede's Conjecture (1974)

$$
\text { Tiling } \Longleftrightarrow \text { Spectrality in } \mathbb{R}^{d}
$$

Spectrality \nRightarrow Tiling (Tao '04)

Counterexample in \mathbb{R}^{5}; follows from the abundance of 6×6 complex Hadamard matrices.

Fuglede's conjecture

Fuglede's Conjecture (1974)

$$
\text { Tiling } \Longleftrightarrow \text { Spectrality in } \mathbb{R}^{d}
$$

Spectrality \neq Tiling (Tao '04)

Counterexample in \mathbb{R}^{5}; follows from the abundance of 6×6 complex Hadamard matrices.
This direction fails for $d \geq 3$ (Kolountzakis, Matolcsi '06).

Fuglede's conjecture

Fuglede's Conjecture (1974)

$$
\text { Tiling } \Longleftrightarrow \text { Spectrality in } \mathbb{R}^{d}
$$

Spectrality \neq Tiling (Tao '04)

Counterexample in \mathbb{R}^{5}; follows from the abundance of 6×6 complex Hadamard matrices.
This direction fails for $d \geq 3$ (Kolountzakis, Matolcsi '06).

Tiling \nRightarrow Spectrality (Kolountzakis, Matolcsi '06)

Counterexample in \mathbb{R}^{5}; also fails for $d \geq 3$ (Farkas, Matolcsi, Móra '06).

Fuglede's conjecture

Fuglede's Conjecture (1974)

$$
\text { Tiling } \Longleftrightarrow \text { Spectrality in } \mathbb{R}^{d}
$$

Spectrality \nRightarrow Tiling (Tao '04)

Counterexample in \mathbb{R}^{5}; follows from the abundance of 6×6 complex Hadamard matrices.
This direction fails for $d \geq 3$ (Kolountzakis, Matolcsi '06).

Tiling \nRightarrow Spectrality (Kolountzakis, Matolcsi '06)

Counterexample in \mathbb{R}^{5}; also fails for $d \geq 3$ (Farkas, Matolcsi, Móra '06).
Observation:
a counterexample of $S \Rightarrow T$ or $T \Rightarrow S$ in a finite Abelian group with d generators can be lifted to a counterexample in \mathbb{R}^{d}

Fuglede's conjecture

Fuglede's Conjecture (1974)

$$
\text { Tiling } \Longleftrightarrow \text { Spectrality in } \mathbb{R}^{d}
$$

Spectrality \nRightarrow Tiling (Tao '04)

Counterexample in \mathbb{R}^{5}; follows from the abundance of 6×6 complex Hadamard matrices.
This direction fails for $d \geq 3$ (Kolountzakis, Matolcsi '06).

Tiling \nRightarrow Spectrality (Kolountzakis, Matolcsi '06)

Counterexample in \mathbb{R}^{5}; also fails for $d \geq 3$ (Farkas, Matolcsi, Móra '06).
Observation:
a counterexample of $S \Rightarrow T$ or $T \Rightarrow S$ in a finite Abelian group with d generators can be lifted to a counterexample in \mathbb{R}^{d}

Fuglede's conjecture is still open for $d=1,2$. It is true for convex bodies (Lev, Matolcsi '22).

Discrete Fuglede Conjecture

Discrete Fuglede Conjecture

Let A be a subset of a finite Abelian group G. Then A tiles G by translations if and only if A is spectral.

Discrete Fuglede Conjecture

Discrete Fuglede Conjecture

Let A be a subset of a finite Abelian group G. Then A tiles G by translations if and only if A is spectral.
A tiles if there is another subset T (the tiling complement of A), such that each element of G can be expressed uniquely as $a+t$, with $a \in A, t \in T$. Notation: $A \oplus T=G$.

Discrete Fuglede Conjecture

Discrete Fuglede Conjecture

Let A be a subset of a finite Abelian group G. Then A tiles G by translations if and only if A is spectral.
A tiles if there is another subset T (the tiling complement of A), such that each element of G can be expressed uniquely as $a+t$, with $a \in A, t \in T$. Notation: $A \oplus T=G$.
A is spectral if there is a set of characters $B \subset \hat{G}$ that form an orthogonal basis on A.

Discrete Fuglede Conjecture

Discrete Fuglede Conjecture

Let A be a subset of a finite Abelian group G. Then A tiles G by translations if and only if A is spectral.
A tiles if there is another subset T (the tiling complement of A), such that each element of G can be expressed uniquely as $a+t$, with $a \in A, t \in T$. Notation: $A \oplus T=G$.
A is spectral if there is a set of characters $B \subset \hat{G}$ that form an orthogonal basis on A.

Results

(1) If G has at least 10 generators, then $S \nRightarrow T$ (Ferguson, Sophanathan, '22)
(2) If G has odd order and at least 4 generators, then $S \nRightarrow T$ (Aten et al. '17)
(3) If G has at most 2 generators, we only have positive results so far (many authors...)
(9) If $G=\mathbb{Z}_{p}^{3}$, then $T \Rightarrow S$ (Aten et al.)

Discrete Fourier Analysis

$\hat{G}=\{\xi: G \rightarrow \mathbb{C}: \xi(x+y)=\xi(x) \xi(y), \forall x, y \in G\}$. Since G finite, $\xi(x)$ is a root of unity.

Discrete Fourier Analysis

$\hat{G}=\{\xi: G \rightarrow \mathbb{C}: \xi(x+y)=\xi(x) \xi(y), \forall x, y \in G\}$. Since G finite, $\xi(x)$ is a root of unity.

Fourier transform

For $f: G \rightarrow \mathbb{C}$ define $\hat{f}: \hat{G} \rightarrow \mathbb{C}$ as

$$
\mathbf{F} f(\xi)=\hat{f}(\xi)=\sum_{x \in G} f(x) \xi(-x)=\langle f, \xi\rangle
$$

Discrete Fourier Analysis

$\hat{G}=\{\xi: G \rightarrow \mathbb{C}: \xi(x+y)=\xi(x) \xi(y), \forall x, y \in G\}$. Since G finite, $\xi(x)$ is a root of unity.

Fourier transform

For $f: G \rightarrow \mathbb{C}$ define $\hat{f}: \hat{G} \rightarrow \mathbb{C}$ as

$$
\mathbf{F} f(\xi)=\hat{f}(\xi)=\sum_{x \in G} f(x) \xi(-x)=\langle f, \xi\rangle
$$

Inverse Fourier transform: $f(x)=\frac{1}{|G|} \sum_{\xi \in \hat{G}} \hat{f}(\xi) \xi(x)$.
Convolution: $f * g(x)=\sum_{y \in G} f(x-y) g(y) . \widehat{f * g}=\hat{f} \cdot \hat{g}$.
Parseval: $\mathbf{U}=\frac{1}{\sqrt{|G|}} \mathbf{F}$ is unitary: $|G| \sum_{x \in G}|f(x)|^{2}=\sum_{\xi \in \hat{G}}|\hat{f}(\xi)|^{2}$.

Discrete Fourier Analysis

$\hat{G}=\{\xi: G \rightarrow \mathbb{C}: \xi(x+y)=\xi(x) \xi(y), \forall x, y \in G\}$. Since G finite, $\xi(x)$ is a root of unity.

Fourier transform

For $f: G \rightarrow \mathbb{C}$ define $\hat{f}: \hat{G} \rightarrow \mathbb{C}$ as

$$
\mathbf{F} f(\xi)=\hat{f}(\xi)=\sum_{x \in G} f(x) \xi(-x)=\langle f, \xi\rangle
$$

Inverse Fourier transform: $f(x)=\frac{1}{|G|} \sum_{\xi \in \hat{G}} \hat{f}(\xi) \xi(x)$.
Convolution: $f * g(x)=\sum_{y \in G} f(x-y) g(y) \cdot \widehat{f * g}=\hat{f} \cdot \hat{g}$.
Parseval: $\mathbf{U}=\frac{1}{\sqrt{|G|}} \mathbf{F}$ is unitary: $|G| \sum_{x \in G}|f(x)|^{2}=\sum_{\xi \in \hat{G}}|\hat{f}(\xi)|^{2}$.
Restricting inner products on $A \subset G$:

$$
\langle f, g\rangle_{A}=\sum_{x \in A} f(x) \overline{g(x)}=\left\langle\left. f\right|_{A},\left.g\right|_{A}\right\rangle .
$$

$\xi, \psi \in \hat{G}$ are orthogonal on A if $\langle\xi, \psi\rangle_{A}=0$ (Notation: $\xi \perp \psi$.)

Delsarte's method

Let $E \subset G$, such that $0 \in E$ and $E=-E$ (forbidden set). We seek to maximize $|B|$ such that $(B-B) \cap E=\{0\}$.

Delsarte's method

Let $E \subset G$, such that $0 \in E$ and $E=-E$ (forbidden set). We seek to maximize $|B|$ such that $(B-B) \cap E=\{0\}$.

Witness function

A function $h: G \rightarrow \mathbb{R}$ is called a witness function with respect to E if
(a) h is even and $h(x) \leq 0, \forall x \in G \backslash E$.
(b) $\hat{h} \geq 0, \hat{h}(0)>0$.

Delsarte's method

Let $E \subset G$, such that $0 \in E$ and $E=-E$ (forbidden set). We seek to maximize $|B|$ such that $(B-B) \cap E=\{0\}$.

Witness function

A function $h: G \rightarrow \mathbb{R}$ is called a witness function with respect to E if
(a) h is even and $h(x) \leq 0, \forall x \in G \backslash E$.
(b) $\hat{h} \geq 0, \hat{h}(0)>0$.

Theorem (Delsarte '72)

With B, E, h as above, it holds

$$
|B| \leq|G| \cdot \frac{h(0)}{\hat{h}(0)} .
$$

Spectrum

$B \subset \hat{G}$ is a set of orthogonal characters of $A \subset G$, if for every $\xi \neq \psi, \xi, \psi \in B$ we have

$$
0=\langle\xi, \psi\rangle_{A}=\sum_{x \in A}\left(\xi \psi^{-1}\right)(x)=\hat{\mathbf{1}}_{A}\left(\xi \psi^{-1}\right)
$$

or equivalently,

$$
B-B \subset Z\left(\hat{\mathbf{1}}_{A}\right) \cup\{0\} .
$$

If in addition $|B|=|A|$, then B is a spectrum of A (it always holds $|B| \leq|A|$).

Spectrum

$B \subset \hat{G}$ is a set of orthogonal characters of $A \subset G$, if for every $\xi \neq \psi, \xi, \psi \in B$ we have

$$
0=\langle\xi, \psi\rangle_{A}=\sum_{x \in A}\left(\xi \psi^{-1}\right)(x)=\hat{\mathbf{1}}_{A}\left(\xi \psi^{-1}\right)
$$

or equivalently,

$$
B-B \subset Z\left(\hat{\mathbf{1}}_{A}\right) \cup\{0\} .
$$

If in addition $|B|=|A|$, then B is a spectrum of A (it always holds $|B| \leq|A|$).

If there is a witness $h: G \rightarrow \mathbb{R}$ for $E=G \backslash Z\left(\hat{\mathbf{1}_{A}}\right)$ such that

$$
|G| \cdot \frac{h(0)}{\hat{h}(0)}<|A|,
$$

then A is not spectral.

Spectrum

$B \subset \hat{G}$ is a set of orthogonal characters of $A \subset G$, if for every $\xi \neq \psi, \xi, \psi \in B$ we have

$$
0=\langle\xi, \psi\rangle_{A}=\sum_{x \in A}\left(\xi \psi^{-1}\right)(x)=\hat{\mathbf{1}}_{A}\left(\xi \psi^{-1}\right)
$$

or equivalently,

$$
B-B \subset Z\left(\hat{\mathbf{1}}_{A}\right) \cup\{0\} .
$$

If in addition $|B|=|A|$, then B is a spectrum of A (it always holds $|B| \leq|A|$).

If there is a witness $h: G \rightarrow \mathbb{R}$ for $E=G \backslash Z\left(\hat{\mathbf{1}_{A}}\right)$ such that

$$
|G| \cdot \frac{h(0)}{\hat{h}(0)}<|A|,
$$

then A is not spectral.

Remark

$h=\widehat{\mathbf{1}_{A} * \mathbf{1}_{-A}}=\left|\hat{\mathbf{1}}_{A}\right|^{2}$ is a witness function for E which achieves equality, i. e.
$|G| \cdot h(0) / \hat{h}(0)=|A|$.

$$
G=\mathbb{Z}_{p}^{3}
$$

Fix an isomorphism $G \cong \hat{G}$, under the map $x \mapsto \xi_{x}$, where $\xi_{x}(y)=\zeta_{p}^{\langle x, y\rangle}$, with $\zeta_{p}=e^{2 \pi i / p}$ and

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

$$
G=\mathbb{Z}_{p}^{3}
$$

Fix an isomorphism $G \cong \hat{G}$, under the map $x \mapsto \xi_{x}$, where $\xi_{x}(y)=\zeta_{p}^{\langle x, y\rangle}$, with $\zeta_{p}=e^{2 \pi i / p}$ and

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

We write $x \perp y$ if $\langle x, y\rangle=0$. It holds $\operatorname{dim}_{\mathbb{F}_{p}} x^{\perp}=2$, if $x \neq O=(0,0,0)$.

$$
G=\mathbb{Z}_{p}^{3}
$$

Fix an isomorphism $G \cong \hat{G}$, under the map $x \mapsto \xi_{x}$, where $\xi_{x}(y)=\zeta_{p}^{\langle x, y\rangle}$, with $\zeta_{p}=e^{2 \pi i / p}$ and

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

We write $x \perp y$ if $\langle x, y\rangle=0$. It holds $\operatorname{dim}_{\mathbb{F}_{p}} x^{\perp}=2$, if $x \neq O=(0,0,0)$.
If L is a line through O, then L^{*} denotes the punctured line $L \backslash\{O\}$.

Fix an isomorphism $G \cong \hat{G}$, under the $\operatorname{map} x \mapsto \xi_{x}$, where $\xi_{x}(y)=\zeta_{p}^{\langle x, y\rangle}$, with $\zeta_{p}=e^{2 \pi i / p}$ and

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

We write $x \perp y$ if $\langle x, y\rangle=0$. It holds $\operatorname{dim}_{\mathbb{F}_{p}} x^{\perp}=2$, if $x \neq O=(0,0,0)$.
If L is a line through O, then L^{*} denotes the punctured line $L \backslash\{O\}$.

Balanced (or ray-type) functions

A function $h: G \rightarrow \mathbb{C}$ is called balanced if it is constant on every punctured line (i. e. it is homogeneous of degree 0).

$$
G=\mathbb{Z}_{p}^{3}
$$

Fix an isomorphism $G \cong \hat{G}$, under the map $x \mapsto \xi_{x}$, where $\xi_{x}(y)=\zeta_{p}^{\langle x, y\rangle}$, with $\zeta_{p}=e^{2 \pi i / p}$ and

$$
\langle x, y\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

We write $x \perp y$ if $\langle x, y\rangle=0$. It holds $\operatorname{dim}_{\mathbb{F}_{p}} x^{\perp}=2$, if $x \neq O=(0,0,0)$.
If L is a line through O, then L^{*} denotes the punctured line $L \backslash\{O\}$.

Balanced (or ray-type) functions

A function $h: G \rightarrow \mathbb{C}$ is called balanced if it is constant on every punctured line (i. e. it is homogeneous of degree 0).

Balanced witness function

If h is a witness function for a union of lines E, then g is also a witness function for E, where

$$
g(x)=\frac{1}{p-1} \sum_{\lambda \in \mathbb{Z}_{p}^{*}} h(\lambda x)
$$

is in addition a balanced function.

Passing to $\mathbf{P} \mathbb{F}_{p}^{2}$

$[x: y: z]=[\lambda x: \lambda y: \lambda z]$ for $\lambda \neq 0$. The affine plane is included in \mathbf{P}_{p}^{2} via the map $(x, y) \mapsto[x: y: 1]$; for $z=0$ we get the line at infinity.

Passing to $\mathbf{P} \mathbb{F}_{p}^{2}$

$[x: y: z]=[\lambda x: \lambda y: \lambda z]$ for $\lambda \neq 0$. The affine plane is included in $\mathbf{P} \mathbb{F}_{p}^{2}$ via the map $(x, y) \mapsto[x: y: 1]$; for $z=0$ we get the line at infinity.

\mathbb{Z}_{p}^{3}	$\mathbf{P} \mathbb{F}_{p}^{2}$
punctured line	point
punctured plane	line

Passing to $\mathbf{P} \mathbb{F}_{p}^{2}$

$[x: y: z]=[\lambda x: \lambda y: \lambda z]$ for $\lambda \neq 0$. The affine plane is included in $\mathbf{P} \mathbb{F}_{p}^{2}$ via the map $(x, y) \mapsto[x: y: 1]$; for $z=0$ we get the line at infinity.

\mathbb{Z}_{p}^{3}	$\mathbf{P} \mathbb{F}_{p}^{2}$
punctured line	point
punctured plane	line

If S is a union of punctured lines in \mathbb{Z}_{p}^{3}, then the corresponding set of points in $\mathbf{P} \mathbb{F}_{p}^{2}$ is denoted by \tilde{S}.

Fourier analysis on the finite projective plane
If L is a line through O, then:

$$
\hat{\mathbf{1}}_{O}=\mathbf{1}_{\mathbb{Z}_{p}^{3}}, \quad \hat{\mathbf{1}}_{L}=p \mathbf{1}_{L^{\perp}}, \quad \hat{\mathbf{1}}_{L^{*}}=p \mathbf{1}_{L^{\perp}}-\mathbf{1}_{\mathbb{Z}_{p}^{3}}
$$

Fourier analysis on the finite projective plane

If L is a line through O, then:

$$
\hat{\mathbf{1}}_{O}=\mathbf{1}_{\mathbb{Z}_{p}^{3}}, \quad \hat{\mathbf{1}}_{L}=p \mathbf{1}_{L^{\perp}}, \quad \hat{\mathbf{1}}_{L^{*}}=p \mathbf{1}_{L^{\perp}}-\mathbf{1}_{\mathbb{Z}_{p}^{3}}
$$

Functions on projective plane

For $f: \mathbb{Z}_{p}^{3} \rightarrow \mathbb{C}$ balanced, define $\tilde{f}: \mathbf{P} \mathbb{F}_{p}^{2} \cup\{O\} \rightarrow \mathbb{C}$ as $\tilde{f}([x: y: z])=f(x, y, z)$, $\tilde{f}(O)=f(O)$. The Fourier transform is defined to satisfy $\tilde{\tilde{f}}=\hat{\tilde{f}}$.

Fourier analysis on the finite projective plane

If L is a line through O, then:

$$
\hat{\mathbf{1}}_{O}=\mathbf{1}_{\mathbb{Z}_{P}^{3}}, \quad \hat{\mathbf{1}}_{L}=p \mathbf{1}_{L^{\perp}}, \quad \hat{\mathbf{1}}_{L^{*}}=p \mathbf{1}_{L^{\perp}}-\mathbf{1}_{\mathbb{Z}_{P}^{3}}
$$

Functions on projective plane

For $f: \mathbb{Z}_{p}^{3} \rightarrow \mathbb{C}$ balanced, define $\tilde{f}: \mathbf{P} \mathbb{F}_{p}^{2} \cup\{O\} \rightarrow \mathbb{C}$ as $\tilde{f}([x: y: z])=f(x, y, z)$, $\tilde{f}(O)=f(O)$. The Fourier transform is defined to satisfy $\tilde{\hat{f}}=\hat{\tilde{f}}$.

Abusing notation, we write $O=[0: 0: 0]$. For $P=[x: y: z] \in \mathbf{P} \mathbb{F}_{p}^{2}$ define

$$
P^{\perp}=\left\{Q=[u: v: w] \in \mathbf{P} \mathbb{F}_{p}^{2}: x u+y v+z w=0\right\} .
$$

$$
\hat{\delta}_{P}=p \delta_{P \perp}+p \delta_{O}-\mathbf{1}, \quad \hat{\delta}_{O}=\mathbf{1} .
$$

Blocking sets

Definition

$Z \subset \mathbf{P F}_{p}^{2}$ is a blocking set if it intersects every line, but contains none.

Blocking sets

Definition

$Z \subset \mathbf{P} \mathbb{F}_{p}^{2}$ is a blocking set if it intersects every line, but contains none.

Facts:

- If Z is a blocking set, then so is Z^{c}.
- If $A \subset \mathbb{Z}_{p}^{3}$ is spectral, then $p||A|$. If $| A \mid=p$ or p^{2}, then it tiles. If $|A|>p^{2}$, then $A=\mathbb{Z}_{p}^{3}$. Otherwise, $|A|=p k$, with $1<k<p$ and

$$
\widetilde{Z\left(\hat{\mathbf{1}}_{A}\right)}=\left\{[x: y: z] \in \mathbf{P} \mathbb{F}_{p}^{2}: \hat{\mathbf{1}}_{A}(x, y, z)=0\right\}=Z^{c}
$$

is a blocking set, and so is $Z=\widetilde{\operatorname{supp} \hat{\mathbf{1}}_{A}}$ (Fallon, Mayeli, Villano '19).

- Let Z^{\prime} be the smallest blocking set such that $Z^{\prime} \subset Z$. Then (Bruen, Thas '77),

$$
\left|Z^{\prime}\right| \leq p \sqrt{p}+1
$$

Finding the witness function

Define

$$
\tilde{h}=\delta_{Z^{\prime}}+\left(\left|Z^{\prime}\right|-p\right) \delta_{O}
$$

Finding the witness function

Define

$$
\tilde{h}=\delta_{Z^{\prime}}+\left(\left|Z^{\prime}\right|-p\right) \delta_{O}
$$

h is a witness function for $E=\mathbb{Z}_{p}^{3} \backslash Z\left(\hat{\mathbf{1}}_{A}\right)$:

- The first condition $(h \leq 0$ outside $E)$ is satisfied, as $\operatorname{supp} \tilde{h} \subset Z \cup\{O\}$.
- The second condition (positivity of \hat{h}) is satisfied:

$$
\hat{\tilde{h}}=p\left(\sum_{P \in Z^{\prime}} \delta_{P \perp}+\left|Z^{\prime}\right| \delta_{O}-\mathbf{1}\right)
$$

so that for $Q \in \mathbf{P} \mathbb{F}_{p}^{2}$

$$
\begin{aligned}
& \qquad \hat{\tilde{h}}(Q)=p\left(\sum_{P \in Z^{\prime}} \delta_{P \perp}(Q)-1\right)=p\left(\sum_{P \in Z^{\prime}} \delta_{Q^{\perp}}(P)-1\right)=p\left(\left|Z^{\prime} \cap Q^{\perp}\right|-1\right) \geq 0 \\
& \text { and } \hat{\tilde{h}}(O)=p\left(\left|Z^{\prime}\right|-1\right)>0 \text {. }
\end{aligned}
$$

Finding the witness function

Suppose that $B \subset \hat{G}$ is a (maximal) set of pairwise orthogonal characters on A. Delsarte's method with witness function h gives us

$$
|B| \leq|G| \cdot \frac{h(0)}{\hat{h}(0)}=p^{3} \cdot \frac{\tilde{h}(O)}{\hat{\tilde{h}}(O)}=p^{3} \cdot \frac{\left|Z^{\prime}\right|-p}{p\left(\left|Z^{\prime}\right|-1\right)}=p^{2}\left(1-\frac{p-1}{\left|Z^{\prime}\right|-1}\right)
$$

Finding the witness function

Suppose that $B \subset \hat{G}$ is a (maximal) set of pairwise orthogonal characters on A. Delsarte's method with witness function h gives us

$$
|B| \leq|G| \cdot \frac{h(0)}{\hat{h}(0)}=p^{3} \cdot \frac{\tilde{h}(O)}{\hat{\tilde{h}}(O)}=p^{3} \cdot \frac{\left|Z^{\prime}\right|-p}{p\left(\left|Z^{\prime}\right|-1\right)}=p^{2}\left(1-\frac{p-1}{\left|Z^{\prime}\right|-1}\right)
$$

When is the latter $<|A|=p k$? Precisely when

$$
k>p-\frac{p-1}{\sqrt{p}} .
$$

Finding the witness function

Suppose that $B \subset \hat{G}$ is a (maximal) set of pairwise orthogonal characters on A. Delsarte's method with witness function h gives us

$$
|B| \leq|G| \cdot \frac{h(0)}{\hat{h}(0)}=p^{3} \cdot \frac{\tilde{h}(O)}{\hat{\tilde{h}}(O)}=p^{3} \cdot \frac{\left|Z^{\prime}\right|-p}{p\left(\left|Z^{\prime}\right|-1\right)}=p^{2}\left(1-\frac{p-1}{\left|Z^{\prime}\right|-1}\right) .
$$

When is the latter $<|A|=p k$? Precisely when

$$
k>p-\frac{p-1}{\sqrt{p}} .
$$

Theorem (M. '22)

If $A \subset \mathbb{Z}_{p}^{3}$ and

$$
p^{2}-p \sqrt{p}+\sqrt{p}<|A|<p^{2},
$$

then A is not spectral.

Finding the witness function

Suppose that $B \subset \hat{G}$ is a (maximal) set of pairwise orthogonal characters on A. Delsarte's method with witness function h gives us

$$
|B| \leq|G| \cdot \frac{h(0)}{\hat{h}(0)}=p^{3} \cdot \frac{\tilde{h}(O)}{\hat{\tilde{h}}(O)}=p^{3} \cdot \frac{\left|Z^{\prime}\right|-p}{p\left(\left|Z^{\prime}\right|-1\right)}=p^{2}\left(1-\frac{p-1}{\left|Z^{\prime}\right|-1}\right) .
$$

When is the latter $<|A|=p k$? Precisely when

$$
k>p-\frac{p-1}{\sqrt{p}} .
$$

Theorem (M. '22)

If $A \subset \mathbb{Z}_{p}^{3}$ and

$$
p^{2}-p \sqrt{p}+\sqrt{p}<|A|<p^{2},
$$

then A is not spectral.

Remark

- It takes care about \sqrt{p} multiples of p between $2 p$ and $(p-1) p$.
- Previously known only for $k=p-2$ or $p-1$ (Fallon, Mayeli, Villano '19).

Work in progress - Open questions

(1) Could Z^{\prime} be smaller? At any rate, not smaller than $\frac{3}{2}(p+1)$; in this case, if

$$
p \cdot \frac{p^{2}+5 p}{3 p+1}<|A|<p^{2}
$$

then A is not spectral, using the same method
(2) Could Z intersect every line in more than one points? Z either intersects every line at 3 points at least, or the points of A are distributed in k parallel planes, each having exactly p points of A.
(3) If Z is a t-blocking set (i. e. it intersects every line at $\geq t$ points), then

$$
\tilde{h}=\delta_{Z^{\prime}}+\left(\left|Z^{\prime}\right|-t p\right) \delta_{O}
$$

is a witness function with respect to $E=\mathbb{Z}_{p}^{3} \backslash Z\left(\hat{\mathbf{1}}_{A}\right)$, where Z^{\prime} is a minimal t-blocking subset of Z. Applying Delsarte's method on h and using bounds on the size of minimal 3 -blocking sets, yield that A is not spectral for $\approx \sqrt{3 p}$ values of k.

Work in progress - Open questions

(1) Could Z^{\prime} be smaller? At any rate, not smaller than $\frac{3}{2}(p+1)$; in this case, if

$$
p \cdot \frac{p^{2}+5 p}{3 p+1}<|A|<p^{2}
$$

then A is not spectral, using the same method
(2) Could Z intersect every line in more than one points? Z either intersects every line at 3 points at least, or the points of A are distributed in k parallel planes, each having exactly p points of A.
(3) If Z is a t-blocking set (i. e. it intersects every line at $\geq t$ points), then

$$
\tilde{h}=\delta_{Z^{\prime}}+\left(\left|Z^{\prime}\right|-t p\right) \delta_{O}
$$

is a witness function with respect to $E=\mathbb{Z}_{p}^{3} \backslash Z\left(\hat{\mathbf{1}}_{A}\right)$, where Z^{\prime} is a minimal t-blocking subset of Z. Applying Delsarte's method on h and using bounds on the size of minimal 3 -blocking sets, yield that A is not spectral for $\approx \sqrt{3 p}$ values of k.

Thank you!

