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BOUNDEDNESS OF FOURIER MULTIPLIERS

▶ The operator A : C∞
c (Rn) → D′(Rn) is called a Fourier multiplier with symbol

σA : Rn → C if it satisfies

FRn(Af )(ξ) = σA(ξ)(FRnf )(ξ) ξ ∈ Rn, f ∈ C∞
c (Rn).

▶ L : non-negative self-adjoint operator on L2(X) with spectrum contained in [0,∞).
Then, for any bounded Borel function φ : [0,∞) → C, using the spectral theorem, we
define spectral multiplier of L (formally) by

φ(L) :=
∫ ∞

0
φ(λ)dEλ,

where dEλ is the spectral measure of L.
▶ L2-boundedness: Easy !
▶ Lp-boundedness Fourier multipliers and spectral multipliers: Hörmander-Mihlin type

condition & Marcinkiewicz type condition Hörmander, Clerc and Stein, Taylor,
Coifman and Weiss, Fefferman, Seeger, Anker, Cowling and Sikora, Guilini, Meda,
Mauceri, Christ, Alexopoulos, Müller, Ricci, Thiele, Hebisch, Thangavelu, Ruzhansky
and many others.
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Lp-Lq FOURIER MULTIPLIERS ON Rn

▶ We are interested in the Lp-Lq boundedness of Fourier and spectral multipliers for
1 < p ≤ q <∞.

▶ Hörmander (1960)1 : For the range 1 < p ≤ 2 ≤ q <∞,

sup
s>0

s
(∫

{ξ∈Rn:|σA(ξ)|≥s}
dξ
) 1

p−
1
q

<∞

⇒ A has a bounded extension from Lp(Rn) to Lq(Rn).

▶ This result has been extended to several settings, such as compact Lie groups, compact
quantum groups2, compact hypergroups3, the generalized Dunkl-Fourier transform4,
eigenfunction expansions, locally compact groups 5, and commutative hypergroups 6.

1L. Hörmander, Estimates for translation invariant operators in Lp spaces. Acta Math., 104:93–140 (1960).
2R. Akylzhanov, S. Majid and M. Ruzhansky, Smooth dense subalgebras and Fourier multipliers on compact quantum groups, Comm. Math. Phys. 362(3) (2018) 761–799.
3V. Kumar and M. Ruzhansky, Hardy-Littlewood inequality and Lp–Lq Fourier multipliers on compact hypergroups, J. Lie theory 32(2), (2022), 475-498.
4V. Kumar and M. Ruzhansky, Lp-Lq boundedness of (k, a)-Fourier multipliers with applications to nonlinear equations, Int. Math. Res. Not. (IMRN)), 2, (2023) 1073-1093.
5R. Akylzhanov and M. Ruzhansky, Lp − Lq multipliers on locally compact groups, J. Func. Anal., 278(3) (2019), DOI: https://doi.org/10.1016/j.jfa.2019.108324
6V. Kumar and M. Ruzhansky, Lp-Lq multipliers on commutative hypergroups, to appear in J. Aust. Math. Soc. (2023). https://arxiv.org/abs/2108.01146
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COMMUTATIVE HYPERGROUPS

A commutative hypergroup7 8 is a non empty locally compact Hausdorff space H with a
weakly continuous, associative convolution ∗ on the Banach space M(H) of all bounded
regular Borel measures on H such that (M(H), ∗) becomes a Banach algebra and the
following properties hold:

(i) For any x, y ∈ H, the convolution δx ∗ δy is a probability measure with compact support,
where δx is the point mass measure at x. Also, the mapping (x, y) 7→ supp(δx ∗ δy) is
continuous from H × H to the space C(H) of all nonempty compact subsets of H
equipped with the Michael (Vietoris) topology.

(ii) There exists a unique element e ∈ H such that δx ∗ δe = δe ∗ δx = δx for every x ∈ H.
(iii) There is a homeomophism x 7→ x̌ on H of order two which induces an involution on

M(H) where µ̌(E) = µ(Ě) for any Borel set E, and e ∈ supp(δx ∗ δy) if and only if x = y̌.
(iv) δx ∗ δy = δx ∗ δy for all x, y ∈ H.

Examples: Every locally compact abelian group is a trivial example of a commutative
hypergroup. Other important examples include double closet spaces, Bessel-Kingman
hypergroups, Jacobi hypergroups and Chébli-Trimèche hypergroups.

7R. I. Jewett, Space with an abstract convolution of measures, Adv. Math, 18 (1975) 1-101.
8W. R. Bloom and H. Heyer, Harmonic analysis on probability measures on hypergroups, De Gruyter, Berlin (1995).
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BASIC OF FOURIER ANALYSIS ON COMMUTATIVE

HYPERGROUPS

▶ A left Haar measure λ on H is a non-zero positive Radon measure λ such that∫
H

f (x ∗ y)dλ(y) =
∫

H
f (y) dλ(y) (∀x ∈ H, f ∈ Cc(H)),

where we used the notation f (x ∗ y) = (δx ∗ δy)(f ).

▶ The dual space of a commutative hypergroup H is defined by

Ĥ = {χ ∈ Cb(H) : χ ̸= 0, χ(x̌) = χ(x) and χ(x ∗ y) = χ(x)χ(y) ∀ x, y ∈ H}.

The elements of Ĥ are called characters of H. We equip Ĥ also with the compact-open
topology so that H becomes a locally compact Hausdorff space. Note that Ĥ need not
possess a hypergroup structure.

▶ The Fourier transform of f ∈ L1(H, λ) is defined by

f̂ (χ) =
∫

H
f (x)χ(x) dλ(x), ∀ χ ∈ Ĥ. (1)
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topology so that H becomes a locally compact Hausdorff space. Note that Ĥ need not
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4 / 16



TWO BASIC (IN)EQUALITIES FOR FOURIER TRANSFORM ON

COMMUTATIVE HYPERGROUPS

▶ There exists a unique positive Borel measure π on Ĥ such that∫
H
|f (x)|2 dλ(x) =

∫
Ĥ
|̂f (χ)|2 dπ(χ) ∀ f ∈ L2(H, λ) ∩ L1(H, λ).

▶ In fact, the Fourier transform extends to a unitary operator from L2(H, λ) onto L2(Ĥ, π).
▶ The support of π, denoted S, need not be equal to Ĥ

Theorem 1 (Hausdorff-Young inequality9)

Let p, p′ be such that 1 ≤ p ≤ 2 and 1
p +

1
p′ = 1. Then for f ∈ L2(H, dλ) ∩ L1(H, dλ) we have the

inequality

∥f̂∥Lp′ (Ĥ,dπ) ≤ ∥f∥Lp(H, dλ).

9S. Degenfeld-Schonburg, On the Hausdorff-Young theorem for commutative hypergroups, Colloq. Math., 131(2) (2013) 219-231.
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THE PALEY INEQUALITY

▶ If a positive function φ on Rn satisfies |{ξ ∈ Rn : φ(ξ) ≥ t}| ≤ C
t for t > 0 then(∫

Rn
|f̂ (ξ)|pφ(ξ)2−p dξ

) 1
p

≲ ∥f∥Lp(Rn) for 1 < p ≤ 2.

Theorem 2
Let H be a commutative hypergroup equipped with a Haar measure λ and let Ĥ be the dual of H
equipped with measure π. Suppose that ψ is a positive function on Ĥ satisfying the condition

Mψ := sup
t>0

t
∫
χ∈Ĥ
ψ(χ)≥t

dπ(χ) <∞. (2)

Then for f ∈ Lp(H, dλ), 1 < p ≤ 2, we have(∫
Ĥ
|̂f (χ)|p ψ(χ)2−pdπ(χ)

) 1
p

≲ M
2−p

p
ψ ∥f∥Lp(H,dλ). (3)
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THE HAUSDORFF-YOUNG-PALEY INEQUALITY

Theorem 3
Let H be a commutative hypergroup equipped with a Haar measure λ and let Ĥ be the dual of H
equipped with measure π. Let 1 < p ≤ 2, and let 1 < p ≤ b ≤ p′ <∞, where p′ = p

p−1 . If ψ(χ) is a

positive function on Ĥ such that

Mψ := sup
t>0

t
∫
χ∈Ĥ
ψ(χ)≥t

dπ(χ) (4)

is finite,

then for every f ∈ Lp(H, dλ) we have(∫
Ĥ

(
|̂f (χ)|ψ(χ)

1
b−

1
p′
)b

dπ(χ)
) 1

b

≲ M
1
b−

1
p′

ψ ∥f∥Lp(H,dλ). (5)
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Lp-Lq FOURIER MULTIPLIERS ON COMMUTATIVE HYPERGROUPS

▶ For a function h ∈ L∞(Ĥ, dπ), define the operator Th as

T̂hf (χ) = h(χ)̂f (χ), χ ∈ Ĥ,

for all f belonging to a suitable function space on Ĥ. The operator Th is called the
Fourier multiplier on H with symbol h.

▶ It is clear that Th is a bounded operator on L2(H, dλ) by the Plancherel theorem.

Theorem 4
Let 1 < p ≤ 2 ≤ q <∞ and let H be a commutative hypergroup. Suppose that Th is a Fourier
multiplier with symbol h. Then we have

∥Th∥Lp(H, dλ)→Lq(H, dλ) ≲ sup
s>0

s
[∫

{χ∈Ĥ:|h(χ)|≥s}
dπ(χ)

] 1
p−

1
q

.
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CHÉBLI-TRIMÈCHE HYPERGROUPS

Now, we will focus on a class of “one dimensional hypergroups” on R+ called
Chébli-Trimèche hypergroups10 11 12 with the convolution structure related to the following
second-order differential operator

L = LA,x := − d2

dx2 − A′(x)
A(x)

d
dx
, (6)

where the function A, called a Chébli-Trimèche function, is continuous on R+, twice
continuously differentiable on R∗

+ := (0,∞) and satisfies the following properties:
(i) A(0) = 0 and A is positive on R∗

+.

(ii) A is an increasing function and A(x) → ∞ as x → ∞.

(iii) A′

A is a decreasing C∞- function on R∗
+ and hence ρ := 1

2 lim
x→∞

A′(x)
A(x) ≥ 0 exists.

(iv) A′(x)
A(x) = 2α+1

x + B(x) on a neighbourhood of 0, where α > −1
2 and B is an odd

C∞-function on R.

10H. Chébli, Generalized translation operators and convolution semi-groups (English), Theory of Potential and Harmonic Analysis (Journées Soc.Mat.France, Institute for Advanced
Mathematical Research, Strasbourg, 1973) Reading Notes in Math., Vol. 404, Springer, Berlin (1974) 35-59.

11H. Chébli, The Paley-Wiener theorem associated with a singular differential operator on (0,∞) (English), J. Math. Pure Appl. (9) 58(1) (1979) 1-19.
12K. Trimèche, Transformation intègrale de Weyl et thèorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0,∞). (French) [Weyl integral transform and

Paley-Wiener theorem associated with a singular differential operator on (0,∞)], J. Math. Pures Appl. (9) 60(1) (1981) 51-98.
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CHÉBLI-TRIMÈCHE HYPERGROUPS

▶ A hypergroup (R+, ∗) is called a Chébli-Trimèche hypergroup if there exists a
Chébli-Trimèche function A such that for any real-valued C∞-function f on R+, i.e., the
restriction of an even non-negative C∞-function on R, the generalised translation
u(x, y) = Txf (y) :=

∫∞
0 f (t) d(δx ∗ δy)(t), y ∈ R+ is the solution of the following Cauchy

problem:

(LA,x − LA,y)u(x, y) = 0,
u(x, 0) = f (x), uy(x, 0) = 0, x > 0.

▶ The Chébli-Trimèche hypergroup associated with the Chébli-Trimèche function A will
be denoted by (R+, ∗(A)).

▶ The growth of (R+, ∗(A)) is determined by the number ρ := 1
2 lim

x→∞
A′(x)
A(x) . We say that

(R+, ∗(A)) is of exponential growth if and only if ρ > 0. Otherwise we say that the
hypergroup is of subexponential growth which also includes the polynomial growth.
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SOME EXAMPLES

The class of Chébli-Trimèche hypergroups contains many important classes of
hypergroups. We will discuss three of them here.

(i) If A(x) := x2α+1 with 2α ∈ N and α > −1
2 then LA,x is the radial part of the Laplace

operator on the Euclidean space and (R+, ∗(A)) is a Bessel-Kingman hypergroup.

(ii) If A(x) := (sinh x)2α+1(cosh x)2β+1 with 2α, 2β ∈ N, α ≥ β ≥ −1
2 and α ̸= −1

2 then LA,x is
the radial part of the Laplace-Beltrami operator on a noncompact Riemannian
symmetric space of rank one (also of Damek-Ricci spaces) and (R+, ∗(A)) is a Jacobi
hypergroup.

(iii) If A is the density function on the simply connected harmonic manifold X of purely
exponential volume growth then LA,x is the radial part of the Laplace-Beltrami operator
on X and (R+, ∗(A)) is the “radial hypergroup" of X.
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FOURIER ANALYSIS ON CHÉBLI-TRIMÈCHE HYPERGROUPS

▶ The Haar measure m on (R+, ∗(A)) is given by m(x) := A(x) dx, where dx is the usual
Lebesgue measure on R+.

▶ For the Chébli-Trimèche hypergroup (R+, ∗(A)), the multiplicative functions on
(R+, ∗(A)) are given by the eigenfunctions of the operator L := LA,x defined in (6). For
any λ ∈ C, the equation

Lu = (λ2 + ρ2)u (7)

has a unique solution ϕλ on R∗
+ which extends continuously to 0 and satisfies ϕλ(0) = 1.

▶ The dual space R̂+ of (R+, ∗(A)) is described by {ϕλ : λ ∈ [0,∞) ∪ [0, iρ]} which can be
identified with the parameter set R+ ∪ [0, iρ].

▶ We define the Fourier transform f̂ of f ∈ L1(R+,Adx) at a point λ ∈ R̂+ by

f̂ (λ) :=
∫ ∞

0
f (x)ϕλ(x)A(x)dx.
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LEVITAN-PLANCHEREL IDENTITY

Theorem 5
There exists a unique non-negative measure π on R̂+ with support [ρ2,∞) such that the Fourier
transform induces an isometric isomorphism from L2(R+,Adx) onto L2(R̂+, π) and for any
f ∈ L1(R+,Adx) ∩ L2(R+,Adx),∫ ∞

0
|f (x)|2 A(x)dx =

∫
R̂+

|̂f (λ)|2 dπ(λ).

▶ The Plancherel measure dπ := C0|c(λ)|−2dλ, where C0 is a positive constant and the
function c satisfies the following: there exist positive constants C1,C2 and K such that
for any λ ∈ C with Im(λ) ≤ 0,

C1|λ|a+
1
2 ≤ |c(λ)|−1 ≤ C2|λ|a+

1
2 for |λ| ≤ K,

C1|λ|α+
1
2 ≤ |c(λ)|−1 ≤ C2|λ|α+

1
2 for |λ| > K.
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SPECTRAL MULTIPLIERS FOR GENERALISED LAPLACIAN

▶ Lp-boundedness of Fourier multipliers on Chébli-Trimèche hypergroups were
established by Bloom and Xu 13.

Theorem 6
Let 1 < p ≤ 2 ≤ q <∞ and Let Th be a Fourier multiplier with symbol h. Then we have

∥Th∥Lp(R+,Adx)→Lq(R+,Adx) ≲ sup
s>0

s
[∫

{λ∈R+:|h(λ)|≥s}
|c(λ)|−2 dλ

] 1
p−

1
q

.

Theorem 7
Let 1 < p ≤ 2 ≤ q <∞ and let φ be a monotonically decreasing continuous function on [ρ2,∞)
such that limu→∞ φ(u) = 0. Then we have

∥φ(L)∥op ≲ sup
u>ρ2

φ(u)

{
(u − ρ2)

(a+1)( 1
p−

1
q ) if (u − ρ2)

1
2 ≤ K,[

K2a+2 − K2α+2 + (u − ρ2)(α+1)
] 1

p−
1
q if (u − ρ2)

1
2 > K,

(8)

where K is a constant appearing in the estimate of the c-function and ∥ · ∥op denotes the operator
norm from Lp(R+,Adx) to Lq(R+,Adx).

13W. R. Bloom and Z. Xu, Fourier multipliers for Lp on Chébli-Trimèche hypergroups, Proc. London Math. Soc. (3) 80(3) (2000) 643-664.
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THE L-HEAT EQUATION

▶ Let us consider the L-heat equation

∂tu + Lu = 0, u(0) = u0. (9)

▶ One can verify that for each t > 0, u(t, x) = e−tLu0 is a solution of initial value problem
(9). To apply Theorem 7 we consider the function φ(u) = e−tu which satisfies the
condition of Theorem 7 and therefore we get the following

Corollary 1

Let L be the generalised radial Laplacian. For any 1 < p ≤ 2 ≤ q <∞ there exists a positive
constant C = Cα,a,p,q,K such that

∥e−tL∥op ≲

t−2(α+1)( 1
p−

1
q ) if 0 < t < α+1

K

(
1
p −

1
q

)
e−tρ2 e−

(a+1)2

t

(
1
p−

1
q

)2

t−2(a+1)( 1
p−

1
q ) if t ≥ a+1

K

(
1
p −

1
q

)
,

where ∥ · ∥op denotes the operator norm from Lp(R+,Adx) to Lq(R+,Adx).
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condition of Theorem 7 and therefore we get the following

Corollary 1

Let L be the generalised radial Laplacian. For any 1 < p ≤ 2 ≤ q <∞ there exists a positive
constant C = Cα,a,p,q,K such that

∥e−tL∥op ≲

t−2(α+1)( 1
p−

1
q ) if 0 < t < α+1

K

(
1
p −

1
q

)
e−tρ2 e−

(a+1)2

t

(
1
p−

1
q

)2

t−2(a+1)( 1
p−

1
q ) if t ≥ a+1

K

(
1
p −

1
q

)
,

where ∥ · ∥op denotes the operator norm from Lp(R+,Adx) to Lq(R+,Adx).
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Thank you for your attention!
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