Connectifying Counterexamples

Mihalis Kolountzakis

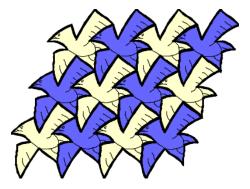
University of Crete

Joint work with Rachel Greenfeld (IAS)

Harmonic and Spectral Analysis 2023 October 2023

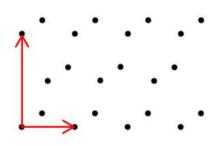
Supported by the Hellenic Foundation for Research and Innovation, HFRI-FM17-1733

- Suppose $A \subseteq \mathbb{Z}^d$ is finite.
- A tiles if there is $T \subseteq \mathbb{Z}^d$ such that $A \oplus T = \mathbb{Z}^d$.



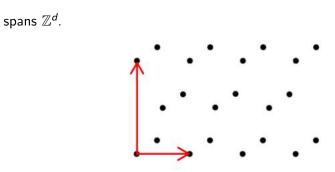
• *T* is **periodic** if its period group

$$P = \left\{ g \in \mathbb{Z}^d : T + g = T \right\}$$



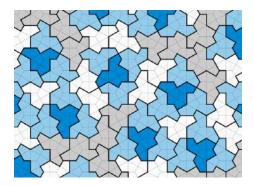
• *T* is **periodic** if its period group

$$P = \left\{ g \in \mathbb{Z}^d : T + g = T \right\}$$



A ⊆ Z^d is an aperiodic tile if it tiles but only with translates T which are not periodic.

• If we allow rotations and reflections then such aperiodic tiles are known to exist, even in the plane.



• Greenfeld and Tao (2022):

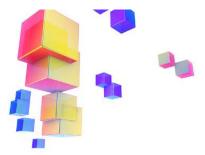
Theorem

If d is sufficiently large then there is a finite $A \subseteq \mathbb{Z}^d$ that tiles \mathbb{Z}^d by translations but only non-periodically.

• Greenfeld and Tao (2022):

Theorem

If d is sufficiently large then there is a finite $A \subseteq \mathbb{Z}^d$ that tiles \mathbb{Z}^d by translations but only non-periodically.



• Thus they disproved the **Periodic Tiling Conjecture** in high dimension.

M. KOLOUNTZAKIS (U. OF CRETE)

• A finite set $A \subseteq \mathbb{Z}^d$ is **spectral** if there exists $\Lambda \subseteq \mathbb{T}^d$ such that

$$\left\{ e_{\lambda}(n) = e^{2\pi i \lambda n} : \lambda \in \Lambda \right\}$$

is orthogonal and $|\Lambda| = |A|$ (completeness).

• A finite set $A \subseteq \mathbb{Z}^d$ is **spectral** if there exists $\Lambda \subseteq \mathbb{T}^d$ such that

$$\left\{ e_{\lambda}(n) = e^{2\pi i \lambda n} : \lambda \in \Lambda \right\}$$

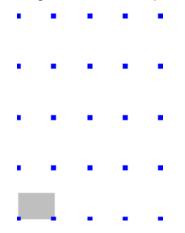
is orthogonal and $|\Lambda| = |A|$ (completeness).

Conjecture (Fuglede, 1974)

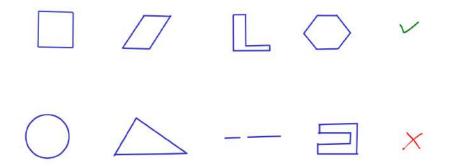
A is a translational tile \iff A is spectral.

TILES AND SPECTRAL SETS

A rectangle and one of its spectra.



More examples of spectral and non-spectral sets



• Tao (2003): Constructed $A \subseteq \mathbb{Z}^5$ which is spectral but not a tile.

- Tao (2003): Constructed $A \subseteq \mathbb{Z}^5$ which is spectral but not a tile.
- K. and Matolcsi (2004): Constructed A ⊆ Z⁵ which tiles but is not spectral.

- Tao (2003): Constructed $A \subseteq \mathbb{Z}^5$ which is spectral but not a tile.
- K. and Matolcsi (2004): Constructed A ⊆ Z⁵ which tiles but is not spectral.
- Due to the work of many others (K., Matolcsi, Farkas, Révész, Móra) both directions are now known to fail for d ≥ 3.

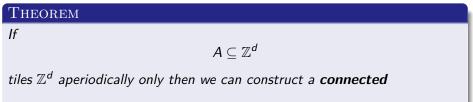
- Tao (2003): Constructed $A \subseteq \mathbb{Z}^5$ which is spectral but not a tile.
- K. and Matolcsi (2004): Constructed A ⊆ Z⁵ which tiles but is not spectral.
- Due to the work of many others (K., Matolcsi, Farkas, Révész, Móra) both directions are now known to fail for d ≥ 3.
- Again, all examples are highly dispersed.

- Demanding some properties from a class of sets may affect tiling and spectrality.
- Lev and Matolcsi (2019): The Fuglede conjecture is true for the class of convex bodies.
- Beauquier, Nivat, Kenyon (1991-92): The Periodic Tiling Conjecture is true for topological disks in the plane.

- Demanding some properties from a class of sets may affect tiling and spectrality.
- Lev and Matolcsi (2019): The Fuglede conjecture is true for the class of convex bodies.
- Beauquier, Nivat, Kenyon (1991-92): The Periodic Tiling Conjecture is true for topological disks in the plane.
- Question: Could it be that demanding **connectivity** changes the game in aperiodicity and spectrality?

- Demanding some properties from a class of sets may affect tiling and spectrality.
- Lev and Matolcsi (2019): The Fuglede conjecture is true for the class of convex bodies.
- Beauquier, Nivat, Kenyon (1991-92): The Periodic Tiling Conjecture is true for topological disks in the plane.
- Question: Could it be that demanding **connectivity** changes the game in aperiodicity and spectrality?
- Answer is NO if one is willing to increase the dimension.
- Larger dimension \implies more freedom to construct examples.

Aperiodicity



$$A' \subseteq \mathbb{Z}^{d+2}$$

that does the same.

Spectral sets that do not tile

THEOREM If $A \subseteq \mathbb{Z}^d$ is spectral but does not tile then we can construct a connected $A' \subseteq \mathbb{Z}^{d+2}$ that does the same.

Non-spectral tiles

Theorem

lf

$A \subseteq \mathbb{Z}^d$

tiles but is not spectral then we can construct a connected

$$A'\subseteq \mathbb{Z}^{d'}$$

that does the same, for some d' > d.

• The difference d' - d depends on the set A.

Aperiodicity preserving operation

Theorem

Let F be a finite subset of \mathbb{Z}^d . Define the finite set

$$X = \{(v_j, s_j) : j = 0, 1, \dots, n-1\} \subseteq \mathbb{R}^{d+k}$$

where $v_0,\ldots,v_{n-1}\in\mathbb{Z}^d$ are arbitrary and s_0,\ldots,s_{n-1} are n distinct points in \mathbb{Z}^k such that

$$S = \{s_j: j = 0, 1, \dots, n-1\}$$

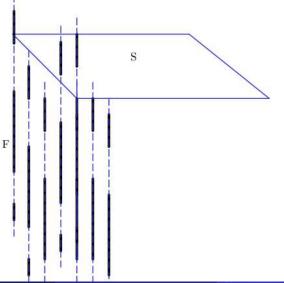
tiles \mathbb{Z}^k by translations.

Let $F' = (F \times \{0\}^k) \oplus X$.

Then F' is an aperiodic tile in \mathbb{Z}^{d+k} if F is an aperiodic tile of \mathbb{Z}^d .

CONNECTED APERIODIC TILES

• Imagine copies of F "hanging" from S at various depths



M. Kolountzakis (U. of Crete)

Proof of the Theorem

• Suppose $F' = (F \times \{0\}^k) \oplus X$ tiles periodically

 $F' \oplus A' = \mathbb{Z}^{d+k}$, where A' = A' + G' and G' a lattice.

Proof of the Theorem

• Suppose $F' = (F \times \{0\}^k) \oplus X$ tiles periodically

 $F' \oplus A' = \mathbb{Z}^{d+k}$, where A' = A' + G' and G' a lattice.

- Define the lattice $G = G' \cap (\mathbb{Z}^d \times \{0\}^k)$
- And the set $A = (A' + X) \cap (\mathbb{Z}^d \times \{0\}^k)$

Proof of the Theorem

• Suppose $F' = (F \times \{0\}^k) \oplus X$ tiles periodically

 $F' \oplus A' = \mathbb{Z}^{d+k}$, where A' = A' + G' and G' a lattice.

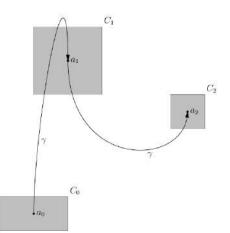
• Define the lattice
$$G = G' \cap (\mathbb{Z}^d \times \{0\}^k)$$

- And the set $A = (A' + X) \cap (\mathbb{Z}^d \times \{0\}^k)$
- Then A = A + G (A is G-periodic) and

$$\mathbb{Z}^{d} \times \{0\}^{k} = \mathbb{Z}^{d+k} \cap (\mathbb{Z}^{d} \times \{0\}^{k})$$
$$= (F' \oplus A') \cap (\mathbb{Z}^{d} \times \{0\}^{k})$$
$$= (F \times \{0\}^{k}) \oplus (X + A') \cap (\mathbb{Z}^{d} \times \{0\}^{k})$$
$$= (F \oplus A) \times \{0\}^{k} \text{ (a periodic tiling).}$$

CONNECTED APERIODIC TILES

- Let C_i be the connected components of F.
- Pick points $a_i \in C_i$. Connect with a path



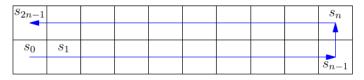
$$\gamma: v_0, v_1, \ldots, v_{n-1}.$$

M. KOLOUNTZAKIS (U. OF CRETE)

17/30

17/30

• S is a rectangle in \mathbb{Z}^2 .



• Define $X \subseteq \mathbb{Z}^{d+2}$ by

$$X = \{X_0, X_1, \dots, X_{2n-1}\}$$

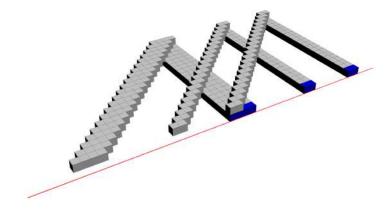
= {(0, s_0), (0, s_1), ..., (0, s_{n-1}), (v_0, s_n), (v_1, s_{n+1}), \dots, (v_{n-1}, s_{2n-1})\}.

LEMMA

The set X is connected in \mathbb{Z}^{d+2} .

Connected Aperiodic tiles

The folded bridge – A connected aperiodic tile



Theorem

The set
$$F' = (F \times \{0\}^2) \oplus X$$
 is connected in \mathbb{Z}^{d+2}

M. KOLOUNTZAKIS (U. OF CRETE)

Connectifying Counterexamples

Theorem

Let Ω be a bounded, measurable set in \mathbb{R}^d . Define the finite set

$$X = \{(v_j, s_j) : j = 0, 1, \dots, n-1\} \subseteq \mathbb{R}^{d+k}$$

where $v_0, \ldots, v_{n-1} \in \mathbb{R}^d$ and s_0, \ldots, s_{n-1} are n distinct points in \mathbb{Z}^k such that

$$S = \{s_j: j = 0, 1, \dots, n-1\}$$

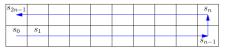
tiles \mathbb{Z}^k by translations. Let $\Omega' = (\Omega \times [0,1]^k) \oplus X$. Then

() Ω' tiles \mathbb{R}^{d+1} by translations if and only if Ω tiles \mathbb{R}^d by translations.

² If Ω ⊂ \mathbb{R}^d and S + [0,1]^k ⊂ \mathbb{R}^k are spectral, then Ω' is spectral in \mathbb{R}^{d+k} .

CONNECTED SPECTRAL NON-TILES

• *S* is a rectangle, as before.

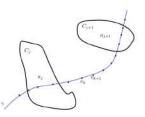


• We define the set $X \subseteq \mathbb{Z}^{d+2}$ as follows

$$X = \{X_0, X_1, \dots, X_{2n-1}\}$$

= {(0, s_0), (0, s_1), \dots, (0, s_{n-1}), (v_0, s_n), (v_1, s_{n+1}), \dots, (v_{n-1}, s_{2n-1}) }.

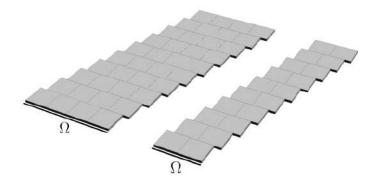
Now the path $v_0, v_1, \ldots, v_{n-1}$ is such that $|v_j - v_{j+1}|$ is very small. This ensures connectivity of



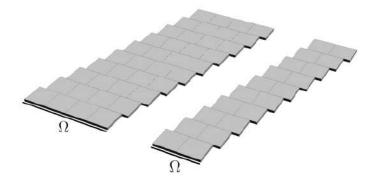
Ω′.

Connected non-spectral tiles

 $\begin{array}{l} \textbf{A stacking of } \Omega \subseteq \mathbb{R}^d \\ \Omega' = \Omega \times [0,1] + \{0,u,2u,\ldots,(n-1)u\}, \ \ u = (v,1), v \in \mathbb{R}^d \end{array}$



 $\begin{array}{l} \textbf{A stacking of } \Omega \subseteq \mathbb{R}^d \\ \Omega' = \Omega \times [0,1] + \{0,u,2u,\ldots,(n-1)u\}, \ \ u = (v,1), v \in \mathbb{R}^d \end{array}$



THEOREM

 $\Omega' \subseteq \mathbb{R}^{d+1}$ is spectral (tile) $\iff \Omega \subseteq \mathbb{R}^d$ is spectral (tile).

M. Kolountzakis (U. of Crete)

Connectifying Counterexamples

22/30

•
$$\mathbf{1}_{\Omega'} = \mathbf{1}_{\Omega \times [0,1]} * (\delta_0 + \delta_u + \dots + \delta_{(n-1)u})$$

 $\widehat{\mathbf{1}}_{\Omega'}(\xi) = \widehat{\mathbf{1}}_{\Omega}(\xi_1, \dots, \xi_d) \widehat{\mathbf{1}}_{[0,1]}(\xi_{d+1}) \left(\sum_{j=0}^{n-1} e^{2\pi i j(u \cdot \xi)}\right)$
 $= \widehat{\mathbf{1}}_{\Omega}(\xi_1, \dots, \xi_d) \widehat{\mathbf{1}}_{[0,1]}(\xi_{d+1}) \frac{1 - e^{2\pi i n(u \cdot \xi)}}{1 - e^{2\pi i (u \cdot \xi)}}, \quad \text{if } u \cdot \xi \notin \mathbb{Z} \quad (1)$

•
$$\mathbf{1}_{\Omega'} = \mathbf{1}_{\Omega \times [0,1]} * (\delta_0 + \delta_u + \dots + \delta_{(n-1)u})$$

 $\widehat{\mathbf{1}}_{\Omega'}(\xi) = \widehat{\mathbf{1}}_{\Omega}(\xi_1, \dots, \xi_d) \widehat{\mathbf{1}}_{[0,1]}(\xi_{d+1}) \left(\sum_{j=0}^{n-1} e^{2\pi i j(u \cdot \xi)}\right)$
 $= \widehat{\mathbf{1}}_{\Omega}(\xi_1, \dots, \xi_d) \widehat{\mathbf{1}}_{[0,1]}(\xi_{d+1}) \frac{1 - e^{2\pi i n(u \cdot \xi)}}{1 - e^{2\pi i (u \cdot \xi)}}, \quad \text{if } u \cdot \xi \notin \mathbb{Z} \quad (1)$

• Define the subgroup of \mathbb{R}^{d+1}

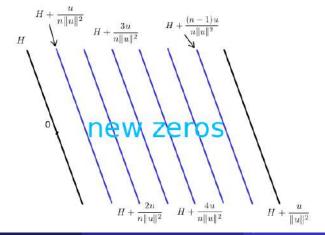
$$G = \left\{ \xi = (\xi_1, \xi_2, \dots, \xi_{d+1}) : u \cdot \xi \in \frac{1}{n} \mathbb{Z} \right\}$$

and its subgroup of index n

$$H = \{\xi = (\xi_1, \xi_2, \ldots, \xi_{d+1}) : u \cdot \xi \in \mathbb{Z}\}.$$

 \bullet Zeros of $\widehat{\mathbf{1}_{\Omega'}}$ are those of $\widehat{\mathbf{1}_{\Omega\times[0,1]}}$ plus the set

$$D = \left(H + \frac{u}{n\|u\|^2}\right) \cup \left(H + \frac{2u}{n\|u\|^2}\right) \cup \ldots \cup \left(H + \frac{(n-1)u}{n\|u\|^2}\right).$$



M. Kolountzakis (U. of Crete)

Connectifying Counterexamples

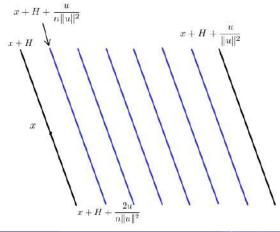
24/30

- Suppose $\Lambda' \subseteq \mathbb{R}^{d+1}$ is a spectrum of Ω' .
- Then dens $\Lambda' = |\Omega'| = n |\Omega| = n |\Omega \times [0, 1]|$

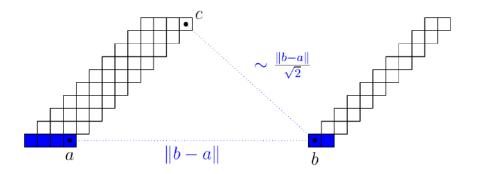
- Suppose $\Lambda' \subseteq \mathbb{R}^{d+1}$ is a spectrum of Ω' .
- Then dens $\Lambda' = |\Omega'| = n |\Omega| = n |\Omega \times [0, 1]|$
- We select $\Lambda \subseteq \Lambda'$ with $\Lambda \Lambda \cap D = \emptyset$ and dens $\Lambda \ge |\Omega| = |\Omega \times [0, 1]|$.

- Suppose $\Lambda' \subseteq \mathbb{R}^{d+1}$ is a spectrum of Ω' .
- Then dens $\Lambda' = |\Omega'| = n |\Omega| = n |\Omega \times [0, 1]|$
- We select $\Lambda \subseteq \Lambda'$ with $\Lambda \Lambda \cap D = \emptyset$ and dens $\Lambda \ge |\Omega| = |\Omega \times [0, 1]|$.
- $\Lambda \Lambda \subseteq \left\{\widehat{\mathbf{1}_{\Omega \times [0,1]}}\right\} \cup \{0\}$ and Λ is a spectrum of $\Omega \times [0,1]$ (K. 2016).
- $\Omega \times [0,1]$ is spectral $\implies \Omega$ is spectral (Greenfeld and Lev 2016).

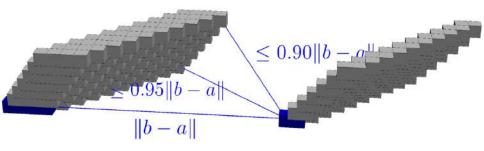
- How to select Λ from Λ' . Look at cosets x + G.
- On each coset select the coset of H most populated with λ 's.
- Selection Λ has density $\geq \frac{1}{n} \operatorname{dens} \Lambda' = |\Omega|$.
- $\Lambda \Lambda$ are all "old zeros".



A stacking of Ω reduces intercomponent distance

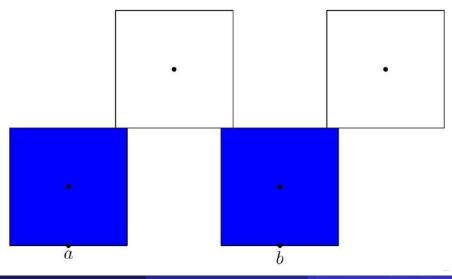


A stacking can be repeated



- Two components can come very close.
- The number of steps (increase in dimension) depends on the components.

Eventually the components get connected



M. Kolountzakis (U. of Crete)

Thank you