Exact signal recovery and restriction theory

Alex losevich

September 2023: ICAPT 2023 (joint work with Azita Mayeli)

Alex losevich (University of Rochester) Exact signal recovery and restriction theory 1/1

• Our starting point is a slight generalization of the following beautiful observation due to Donoho and Stark.

- Our starting point is a slight generalization of the following beautiful observation due to Donoho and Stark.
- Let f be a signal of finite length, i.e

 $f:\mathbb{Z}_N^d\to\mathbb{C}.$

- Our starting point is a slight generalization of the following beautiful observation due to Donoho and Stark.
- Let f be a signal of finite length, i.e

$$f:\mathbb{Z}_N^d\to\mathbb{C}.$$

• Suppose that f is transmitted via its Fourier transforms, with

$$\widehat{f}(m) = N^{-d} \sum_{x \in \mathbb{Z}_N^d} \chi(-x \cdot m) f(x); \ \chi(t) = e^{\frac{2\pi i t}{N}}.$$

- Our starting point is a slight generalization of the following beautiful observation due to Donoho and Stark.
- Let f be a signal of finite length, i.e

$$f:\mathbb{Z}_N^d\to\mathbb{C}.$$

• Suppose that f is transmitted via its Fourier transforms, with

$$\widehat{f}(m) = N^{-d} \sum_{x \in \mathbb{Z}_N^d} \chi(-x \cdot m) f(x); \ \chi(t) = e^{\frac{2\pi i t}{N}}.$$

• Fourier Inversion says that we can reconstruct (or recover) a signal completely using its Fourier its Fourier transforms:

$$f(x) = \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m).$$

Exact recovery problem

• For practical applications, the basic question is, can we *still* recover *f* **exactly** from its discrete Fourier transforms if some values

$$\left\{\widehat{f}(m):m\in S\right\}$$

are unobserved (or missing due to noise, other interference, or security), for some $S \subset \mathbb{Z}_N^d$?

Exact recovery problem

 For practical applications, the basic question is, can we still recover f exactly from its discrete Fourier transforms if some values

$$\left\{\widehat{f}(m):m\in S\right\}$$

are unobserved (or missing due to noise, other interference, or security), for some $S \subset \mathbb{Z}_N^d$?

• The answer turns out to be $|\underline{YES}|$ if f is supported in $E \subset \mathbb{Z}_N^d$, and $|E| \cdot |S| < \frac{N^d}{2}$,

with the main tool being the Uncertainty Principle (UP).

Fourier Inversion and Plancherel

• Given $f : \mathbb{Z}_N^d \to \mathbb{C}$, we shall use the following two formulas repeatedly:

| (注) | (三) | (\Box) | (\Box)

Fourier Inversion and Plancherel

- Given $f : \mathbb{Z}_N^d \to \mathbb{C}$, we shall use the following two formulas repeatedly:
- (Fourier Inversion)

$$f(x) = \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m),$$

不足下 不足下

and

Fourier Inversion and Plancherel

• Given $f : \mathbb{Z}_N^d \to \mathbb{C}$, we shall use the following two formulas repeatedly:

• (Fourier Inversion)

$$f(x) = \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{f}(m),$$

and

• (Plancherel) $\sum_{m\in\mathbb{Z}_N^d} \left|\widehat{f}(m)\right|^2 = N^{-d}\sum_{x\in\mathbb{Z}_N^d} |f(x)|^2.$

• Suppose that $E \subset \mathbb{Z}_N^d$ and f(x) = E(x), the indicator function of E.

- Suppose that $E \subset \mathbb{Z}_N^d$ and f(x) = E(x), the indicator function of E.
- Suppose that the Fourier transform *E* is transmitted, and the frequencies in $S \subset \mathbb{Z}_N^d$ are unobserved.

- Suppose that $E \subset \mathbb{Z}_N^d$ and f(x) = E(x), the indicator function of E.
- Suppose that the Fourier transform *E* is transmitted, and the frequencies in $S \subset \mathbb{Z}_N^d$ are unobserved.
- By Fourier Inversion,

$$E(x) = \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{E}(m)$$

- Suppose that $E \subset \mathbb{Z}_N^d$ and f(x) = E(x), the indicator function of E.
- Suppose that the Fourier transform *E* is transmitted, and the frequencies in $S \subset \mathbb{Z}_N^d$ are unobserved.
- By Fourier Inversion,

٠

$$E(x) = \sum_{m \in \mathbb{Z}_N^d} \chi(x \cdot m) \widehat{E}(m)$$

 $=\sum_{m\notin S}\chi(x\cdot m)\widehat{E}(m)+\sum_{m\in S}\chi(x\cdot m)\widehat{E}(m)=I(x)+II(x).$

An elementary point of view: Cauchy-Schwarz

• By Cauchy-Schwarz,

$$|II(x)| \leq |S|^{\frac{1}{2}} \cdot \left(\sum_{m \in S} |\widehat{E}(m)|^2\right)^{\frac{1}{2}}.$$

An elementary point of view: Cauchy-Schwarz

• By Cauchy-Schwarz,

$$|II(x)| \leq |S|^{rac{1}{2}} \cdot \left(\sum_{m \in S} \left|\widehat{E}(m)
ight|^2
ight)^{rac{1}{2}}.$$

• Extending the sum in S over the sum in \mathbb{Z}_N^d and applying Plancherel, we see that this expression is bounded by

$$|S|^{\frac{1}{2}} \cdot N^{-\frac{d}{2}} \cdot |E|^{\frac{1}{2}}.$$

Alex losevich (University of Rochester) Exact signal recovery and restriction theory 6/17

• If

$$|S|^{\frac{1}{2}} \cdot N^{-\frac{d}{2}} \cdot |E|^{\frac{1}{2}} < \frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

• If

$$S|^{\frac{1}{2}} \cdot N^{-\frac{d}{2}} \cdot |E|^{\frac{1}{2}} < \frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

• This gives us **exact recovery** using a simple and direct argument if $|E| \cdot |S| < \frac{N^d}{4}.$

• If

$$S|^{\frac{1}{2}} \cdot N^{-\frac{d}{2}} \cdot |E|^{\frac{1}{2}} < \frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

• This gives us exact recovery using a simple and direct argument if

$$|E| \cdot |S| < \frac{N^d}{4}.$$

• Our argument is based on rounding while Donoho-Stark's recovery uses some optimization techniques.

• If

$$S|^{\frac{1}{2}} \cdot N^{-\frac{d}{2}} \cdot |E|^{\frac{1}{2}} < \frac{1}{2},$$

we can take the modulus of I(x) and round it up to 1 if it is $\geq \frac{1}{2}$, and round it down to 0 otherwise.

• This gives us exact recovery using a simple and direct argument if

$$E|\cdot|S|<\frac{N^d}{4}.$$

• Our argument is based on rounding while Donoho-Stark's recovery uses some optimization techniques.

• But what happens if we consider general signals?

Donoho-Stark point of view

• Suppose that $h : \mathbb{Z}_N \to \mathbb{C}$ has N_t non-zero values, and its Fourier transform \hat{h} has N_w non-zero entries. Then the classical Uncertainty Principle says that

 $|\operatorname{supp}(h)| \cdot |\operatorname{supp}(\hat{h})| = N_t \cdot N_w \ge N.$

Notation: We use N_t for support in 'time' and N_w for support in 'frequency'.

Donoho-Stark point of view

• Suppose that $h : \mathbb{Z}_N \to \mathbb{C}$ has N_t non-zero values, and its Fourier transform \hat{h} has N_w non-zero entries. Then the classical Uncertainty Principle says that

$$|\operatorname{supp}(h)| \cdot |\operatorname{supp}(\hat{h})| = N_t \cdot N_w \ge N.$$

Notation: We use N_t for support in 'time' and N_w for support in 'frequency'.

• Suppose that $f : \mathbb{Z}_N \to \mathbb{C}$ is supported in $E \subset \mathbb{Z}_N$, with the frequencies in $S \subset \mathbb{Z}_N$ unobserved.

Donoho-Stark point of view

• Suppose that $h : \mathbb{Z}_N \to \mathbb{C}$ has N_t non-zero values, and its Fourier transform \hat{h} has N_w non-zero entries. Then the classical Uncertainty Principle says that

$$|\operatorname{supp}(h)| \cdot |\operatorname{supp}(\hat{h})| = N_t \cdot N_w \ge N.$$

Notation: We use N_t for support in 'time' and N_w for support in 'frequency'.

- Suppose that $f : \mathbb{Z}_N \to \mathbb{C}$ is supported in $E \subset \mathbb{Z}_N$, with the frequencies in $S \subset \mathbb{Z}_N$ unobserved.
- What does it mean that we can recover f uniquely? It means that if there exists a signal $g : \mathbb{Z}_N \to \mathbb{C}$ such that g has N_t non-zero entries, and $\widehat{f}(m) = \widehat{g}(m)$ for $m \notin S$, then f must be equal to g.

Uncertainty Principle (UP) \rightarrow Unique Recovery

• To see this, let h = f - g. It is clear that \hat{h} has at most N_w non-zero entries, and h has at most $2N_t$ non-zero entries.

Uncertainty Principle (UP) \rightarrow Unique Recovery

- To see this, let h = f g. It is clear that \hat{h} has at most N_w non-zero entries, and h has at most $2N_t$ non-zero entries.
- By UP, we must have

$$N_t \cdot N_w \geq \frac{N}{2}.$$

Uncertainty Principle (UP) \rightarrow Unique Recovery

- To see this, let h = f g. It is clear that \hat{h} has at most N_w non-zero entries, and h has at most $2N_t$ non-zero entries.
- By UP, we must have

$$N_t \cdot N_w \geq \frac{N}{2}.$$

• Therefore, if

$$N_t \cdot N_w < \frac{N}{2},$$

we must have h = 0, and hence the recovery is *unique*.

Uncertainty Principle in real life!

Alex losevich (University of Rochester) Exact signal recovery and restriction theory 10/17

An elementary proof of the (finite) Uncertainty Principle

• Suppose that $f : \mathbb{Z}_N^d \to \mathbb{C}$ supported in E, with \hat{f} supported in S.

Alex losevich (University of Rochester) Exact signal recovery and restriction theory 11/17

An elementary proof of the (finite) Uncertainty Principle

- Suppose that $f : \mathbb{Z}_N^d \to \mathbb{C}$ supported in E, with \hat{f} supported in S.
- By Fourier Inversion,

$$f(x) = \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m) \quad \forall \ x \in E.$$

An elementary proof of the (finite) Uncertainty Principle

- Suppose that $f : \mathbb{Z}_N^d \to \mathbb{C}$ supported in E, with \hat{f} supported in S.
- By Fourier Inversion,

$$f(x) = \sum_{m \in S} \chi(x \cdot m) \widehat{f}(m) \quad \forall \ x \in E.$$

• By Cauchy-Schwarz, Plancherel, and the fact that *f* is supported on *E*,

$$|f(x)|^2 \le |S| \cdot \sum_{m \in S} |\widehat{f}(m)|^2$$
$$= |S| \cdot \sum_{m \in \mathbb{Z}_N^d} |\widehat{f}(m)|^2 = |S| \cdot N^{-d} \cdot \sum_{x \in E} |f(x)|^2.$$

Alex losevich (University of Rochester) Exact signal recovery and restriction theory 11/17

• Summing both sides over E and dividing by $\sum_{x \in E} |f(x)|^2$, we get $|E| \cdot |S| \ge N^d$, (the classical UP). • Summing both sides over E and dividing by $\sum_{x \in E} |f(x)|^2$, we get

 $|E| \cdot |S| \ge N^d$, (the classical UP).

• An immediate question that arises is whether this inequality can be improved.

• Summing both sides over E and dividing by $\sum_{x \in E} |f(x)|^2$, we get

 $|E| \cdot |S| \ge N^d$, (the classical UP).

- An immediate question that arises is whether this inequality can be improved.
- In general, we cannot do better, but in most cases we can. This, in essence, is the main thrust of this talk.

Restriction theory enters the picture

• We say that $S \subset \mathbb{Z}_N^d$ satisfies the (p,q) restriction estimate $(1 \leq p \leq q)$ with uniform constant $C_{p,q} > 0$ if for any function $f : \mathbb{Z}_N^d \to \mathbb{C}$,

$$\left(\frac{1}{|S|}\sum_{m\in S}\left|\widehat{f}(m)\right|^{q}\right)^{\frac{1}{q}} \leq C_{p,q}N^{-d}\left(\sum_{x\in \mathbb{Z}_{N}^{d}}\left|f(x)\right|^{p}\right)^{\frac{1}{p}}.$$

トメヨトメヨト

Restriction theory enters the picture

• We say that $S \subset \mathbb{Z}_N^d$ satisfies the (p,q) restriction estimate $(1 \le p \le q)$ with uniform constant $C_{p,q} > 0$ if for any function $f : \mathbb{Z}_N^d \to \mathbb{C}$,

$$\left(\frac{1}{|S|}\sum_{m\in S}\left|\widehat{f}(m)\right|^{q}\right)^{\frac{1}{q}} \leq C_{p,q}N^{-d}\left(\sum_{x\in \mathbb{Z}_{N}^{d}}\left|f(x)\right|^{p}\right)^{\frac{1}{p}}$$

• We shall that there are many such sets in the upcoming slides. Stay tuned! :-)

医水管医水管区

Restriction theory enters the picture

• We say that $S \subset \mathbb{Z}_N^d$ satisfies the (p,q) restriction estimate $(1 \le p \le q)$ with uniform constant $C_{p,q} > 0$ if for any function $f : \mathbb{Z}_N^d \to \mathbb{C}$,

$$\left(\frac{1}{|S|}\sum_{m\in S}\left|\widehat{f}(m)\right|^{q}\right)^{\frac{1}{q}} \leq C_{p,q}N^{-d}\left(\sum_{x\in \mathbb{Z}_{N}^{d}}\left|f(x)\right|^{p}\right)^{\frac{1}{p}}$$

• We shall that there are many such sets in the upcoming slides. Stay tuned! :-)

Theorem

[Uncertainty Principle via Restriction Theory – I & M, 2023] Suppose that $f, \hat{f} : \mathbb{Z}_N^d \to \mathbb{C}$, with f supported in $E \subset \mathbb{Z}_N^d$, and \hat{f} supported in $S \subset \mathbb{Z}_N^d$. Suppose S satisfies the (p,q) restriction estimate with norm $C_{p,q}$. Then

$$|E|^{\frac{1}{p}} \cdot |S| \geq \frac{N^d}{C_{p,q}}.$$

Corollary

[Exact Recovery via Restriction Theory – I & M, 2023] Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ with support supp(f) = E. Let r be another signal with support of the same size such that $\hat{r}(m) = \hat{f}(m)$ for $m \notin S$, and 0 otherwise. Suppose $S \subset \mathbb{Z}_N^d$ satisfies the (p, q) restriction estimate with uniform constant $C_{p,q}$. Then f can be reconstructed from r uniquely if

$$|E|^{\frac{1}{p}}\cdot|S|<\frac{N^d}{2^{\frac{1}{p}}C_{p,q}}.$$

۲

Alex losevich (University of Rochester) Exact signal recovery and restriction theory 14/17

Corollary

[Exact Recovery via Restriction Theory – I & M, 2023] Let $f : \mathbb{Z}_N^d \to \mathbb{C}$ with support supp(f) = E. Let r be another signal with support of the same size such that $\hat{r}(m) = \hat{f}(m)$ for $m \notin S$, and 0 otherwise. Suppose $S \subset \mathbb{Z}_N^d$ satisfies the (p, q) restriction estimate with uniform constant $C_{p,q}$. Then f can be reconstructed from r uniquely if

$$|E|^{\frac{1}{p}}\cdot|S|<\frac{N^d}{2^{\frac{1}{p}}C_{p,q}}.$$

۲

• This raises a rather important question of when we can expect $S \subset \mathbb{Z}_N^d$ to satisfy the (p, q) restriction estimate with norm $C_{p,q}$? This is where we now turn our attention.

Theorem (I & M, 2023)

Let $S \subset \mathbb{Z}_N^d$ with the property that

$$|S| = \Lambda_{size} N^{\frac{d}{2}},$$

and

$$|\{(x,y,x',y')\in U: x+y=x'+y'\}|\leq \Lambda_{energy}\cdot |U|^2$$

for every $U \subset S$.

Then S satisfies $(\frac{4}{3}, 2)$ restriction with $C_{p,q} = \Lambda_{size}^{-\frac{1}{2}} \cdot \Lambda_{energy}^{\frac{1}{4}}$, *i.e.*

$$\left(\frac{1}{|S|}\sum_{m\in S}\left|\widehat{f}(m)\right|^{2}\right)^{\frac{1}{2}} \leq \Lambda_{size}^{-\frac{1}{2}}\cdot\Lambda_{energy}^{\frac{1}{4}}\cdot N^{-d}\left(\sum_{x\in \mathbb{Z}_{N}^{d}}\left|f(x)\right|^{\frac{4}{3}}\right)^{\frac{4}{3}}$$

Alex losevich (University of Rochester) Exact signal recovery and restriction theory 15/17

$\mathsf{Randomness} \to \mathsf{Additive} \ \mathsf{Energy} \to \mathsf{Restriction} \ \mathsf{Estimate}$

• Suppose that $S \subset \mathbb{Z}_N^d$ is chosen randomly with respect to the uniform distribution. It follows from the results by Dubickas, Schoen, Silva and Sarka (2013) that

 $\mathbb{E}(|\{(x, y, x', y') \in S^4 : x + y = x' + y'\}|) \le (5 + \Lambda_{size}^2)|S|^2.$

Randomness \rightarrow Additive Energy \rightarrow Restriction Estimate

• Suppose that $S \subset \mathbb{Z}_N^d$ is chosen randomly with respect to the uniform distribution. It follows from the results by Dubickas, Schoen, Silva and Sarka (2013) that

$$\mathbb{E}(|\{(x, y, x', y') \in S^4 : x + y = x' + y'\}|) \le (5 + \Lambda_{size}^2)|S|^2.$$

• We deduce that if S is chosen randomly, and $|S| = \Lambda_{size} N^{\frac{d}{2}}$ with $\Lambda_{size} > 1$, then for any $f : \mathbb{Z}_N^d \to \mathbb{C}$,

$$\left(\frac{1}{|S|}\sum_{m\in S}\left|\widehat{f}(m)\right|^{2}\right)^{\frac{1}{2}} \leq \Lambda_{size}^{-\frac{1}{2}} \cdot \Lambda_{energy}^{\frac{1}{4}} \cdot N^{-d} \left(\sum_{x\in \mathbb{Z}_{N}^{d}}\left|f(x)\right|^{\frac{4}{3}}\right)^{\frac{3}{4}}$$
$$\leq N^{-d} \left(\sum_{x\in \mathbb{Z}_{N}^{d}}\left|f(x)\right|^{\frac{4}{3}}\right).$$

★ 原 トーイ 原 ト

Alex losevich (University of Rochester) Exact signal recovery and restriction theory 17/17