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Some well known or less known orthonormal bases

Idea of the talk. Various orthonormal bases such as Fourier
bases, Walsh bases, Fourier bases on fractals can be constructed by
iterating certain isometries, representations of the Cuntz algebra.
• Fourier bases in L2[0, 1]: {e2πinx : n ∈ Z}.
• Walsh bases in L2[0, 1]: orthonormal bases of functions which are
±1 on dyadic intervals.
• Fourier bases on Cantor measures. The Jorgensen-Pedersen
Cantor-4 set. Divide [0, 1] into 4 pieces, keep the first and the
third. Repeat. Consider µ4 the Hausdorff measure on the Cantor-4
set. Then{

e2πiλx : λ = l0 + 4l1 + · · ·+ 4nln, li ∈ {0, 1}
}
,

is an orthonormal basis in L2(µ4).
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Fourier series on singular measures

• The Middle Third Cantor set does not work. Question by
Strichartz: are there exponential frames for this?
• Generalizations by: Strichartz, Laba-Wang, D-Jorgensen and
others.
• Picioroaga-Weber: Parseval frames for singular measures.
• D-Ranasinghe: Walsh Parseval frames.

Goal: Develop a general procedure for all these orthonormal bases
and Parseval frames.
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The Cuntz algebra

Definition

Let N ≥ 2. The Cuntz algebra ON is the C ∗-algebra generated by
N isometries (Si )

N−1
i=0 satisfying the Cuntz relations

S∗
i Sj = δij(i , j = 0, . . . ,N − 1),

N−1∑
i=0

SiS
∗
i = 1.

They are very good for generating orthonormal sets:
If α and β are two words with digits in {0, . . . ,N − 1}, and if they
differ at some point αk ̸= βk then SαH ⊥ SβH, where
Sα = Sα1 . . . Sαn .
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A general setting for defining Cuntz isometries

Definition

Let X be a compact metric space and µ a Borel probability measure on
X . Let r : X → X be an N-to-1 onto Borel measurable map, i.e.
|r−1(z)| = N for µ.a.e. z ∈ X , where | · | indicates cardinality. We say
that µ is strongly invariant (for r) if for every continuous function f on X
the following invariance equation is satisfied:∫

fdµ =
1

N

∫ ∑
r(w)=z

f (w)dµ(z)

Example

Let T = {z ∈ C : |z | = 1} be the unit circle. Let r(z) = zN , z ∈ T. Let
µ be the Haar measure on T. Then µ is strongly invariant. An equivalent
system can be realized on[0, 1] with r(x) = Nx mod 1, x ∈ [0, 1] with the
Lebesgue measure dx on [0, 1]. We can identify the unit circle T with the
unit interval [0, 1] by z = e2πix .
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A general setting

Example

We consider affine iterated function systems with no overlap. Let R be a d × d expansive real matrix, i.e., all the

eigenvalues of R have absolute value strictly greater than 1.Let B ⊂ Rd a finite set such that N = |B|. Define the
affine iterated function system

τb(x) = R−1(x + b) (x ∈ Rd , b ∈ B)

By Hutchinson there exists a unique compact subset XB of Rd which satisfies the invariance equation

XB = ∪b∈Bτb(XB )

XB is called the attractor of the iterated function system (τb)b∈B . Moreover XB is given by

XB =


∞∑
k=1

R−kbk : bk ∈ B for all k ≥ 1


Also, there is a unique probability measure µB on Rd satisfying the invariance equation∫

fdµB =
1

N

∑
b∈B

∫
f ◦ τbdµB

for all continuous compactly supported functions f on R. We call µB the invariant measure for the IFS (τb)b∈B .
The measure µB is supported on the attractor XB . We say that the IFS has no overlap if
µB (τb(XB ) ∩ τ ′

b(XB )) = ∅ for all b ̸= b′ in B.
Assume that the IFS (τb)b∈B has no overlap. Define the map r : XB → XB

r(x) = τ
−1
b (x), if x ∈ τb(XB )

Then r is an N-to-1 onto map and µB is strongly invariant for r . Note that r−1(x) = {τb(x) : b ∈ B} for
µB .a.e. x ∈ XB .
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A general setting

Definition

Let (X , r) and the measure µ be as above. A QMF basis is a set of N functions m0,m1, . . . ,mN−1 in L∞(X )
such that

1

N

∑
r(w)=z

mi (w)mj (w) = δij , (i, j ∈ {0, . . . ,N − 1}, z ∈ X )

Proposition

Let (mi )
N−1
i=0 be a QMF basis. Define the operators on L2(X , µ)

Si (f ) = mi f ◦ r, i = 0, . . . ,N − 1

Then the operators Si are isometries and they form a representation of the Cuntz algebra ON , i.e.

S∗
i Sj = δij , i, j = 0, . . . ,N − 1,

N−1∑
i=0

SiS
∗
i = I
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Examples

Example

(Wavelets) Take X = [0, 1] r(x) = 2x mod 1, µ the Lebesgue
measure. Take m0,m1 to be the low-pass, high pass filters in
multiresolution theory.

Example

(Fourier series) Take X = [0, 1] r(x) = 2x mod 1, µ the Lebesgue
measure. Take m0 = 1, m1 = e2πix .

Example

(Walsh series) Take X = [0, 1] r(x) = 2x mod 1, µ the Lebesgue
measure. Take m0 = 1 , m1 = χ[0,1/2) − χ[1/2,1).
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Examples

Example

(Fourier series on fractals) Let R be a d × d expansive integer
matrix, let B ⊂ Zd , #B = N, 0 ∈ B. Consider X = XB and
r(x) = Rx(modXB) and the invariant measure µB . Assume that
there exists a set L in Zd , with #L = N, 0 ∈ L such that the matrix

1√
N
(e2πiR

−1b·l)l∈L,b∈B

is unitary. (We call (R,B, L) a Hadamard system). Define
ml(x) = e2πilx , l ∈ L, x ∈ XB . Then (ml)l∈L forms a QMF basis.
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Basic idea

Assume we have some Cuntz isometries (Si )
N−1
i=0 on a Hilbert space

H. In addition assume that S01 = 1. Consider the family of vectors

E = {Sj1Sj2 . . . Sjn1 : j1, . . . , jn ∈ {0, . . . ,N − 1}, n ≥ 0}.

To avoid repetitions assume jn ̸= 0 and include the empty word, so
that 1 appears in the family.

The family is always orthogonal, if
j1 . . . jn and l1 . . . lm are two words and jk ̸= lk for some k then
take the first such k , SjkH ⊥ SlkH and since the maps are
isometries we get that Sj1 . . . Sjn1 ⊥ Sl1 . . . Slm1. A similar thing
can be done when one word is a prefix of the other (complete with
0’s at the end). Thus the family is orthonormal.
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Basic idea

Completeness is a much more delicate issue. But here is the idea. We consider the norm of projections onto the
span, for some “nice” functions et which span the entire space (these will usually be exponentials). We have

E = ∪N−1
l=0

SlE.

h(t) := ∥Pet∥2 =
∑
e∈E

| ⟨et , e⟩ |2 =

N−1∑
l=0

∑
e∈E

| ⟨et , Sl e⟩ |
2 =

N−1∑
l=0

∑
e∈E

|
〈
S∗
l et , e

〉
|2

= ( some assumption ) =

N−1∑
l=0

∑
e∈E

|νl (t)|
2|

〈
egl (t)

, e
〉
|2 =

N−1∑
l=0

|νl (t)|
2h(gl (t)).

Thus h is a fixed point of a Ruelle/transfer operator. If we can show that the only fixed points of this operator are
the constant functions then we get ∥Pet∥ = 1 which means that the functions et are in the span and therefore the
family E is complete.
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A general theorem

Theorem

Let H be a Hilbert space and (Si )
N−1
i=0 be a representation of the Cuntz algebra ON . Let E be an orthonormal set

in H and e : T → H a norm continuous function on a topological space T with the following properties:

1 E = ∪N−1
i=0 SiE.

2 span{e(t) : t ∈ T } = H and ||e(t)||= 1, for all t ∈ T .

3 There exist functions νi : T → C, gi : T → T , i = 0, . . . ,N − 1 such that

S∗
i e(t) = νi (t)e(gi (t)), t ∈ T .

4 There exist c0 ∈ T such that e(c0) ∈ spanE.

5 The only function h ∈ C(T ) with h ≥ 0, h(c) = 1, ∀ c ∈ {x ∈ T : e(x) ∈ spanE}, and

h(t) =

N−1∑
i=0

|νi (t)|
2h(gi (t)), t ∈ T

are the constant functions.

Then E is an orthonormal basis for H.
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Forier series on fractals
Consider (R, B, L) a Hadamard system in Z. Let µB be the invariant measure associated to (R, B),

r(x) = Rx mod XB . Recall that (el )l∈L is a QMF basis. eλ(x) = e2πiλ·x . The operators

(Sl f )(x) = e2πilx f (Rx mod XB ), (l ∈ L, f ∈ L2(µB )),

are Cuntz isometries. Note that
Sl ek = el+Rk , (l ∈ L, k ∈ Z).

Definition

We say that c ∈ R is an extreme cycle point for (B, L) if there exists l0, l1, . . . , lp−1 in L such that, if c0 = c,

c1 =
c0+l0

R
, c2 =

c1+l1
R

. . . cp−1 =
cp−2+lp−2

R
then

cp−1+lp−1
R

= c0, and |mB (ci )| = 1 for
i = 0, . . . , p − 1 where

mB (x) =
1

N

∑
b∈B

e2πibx x ∈ R.

{0} is called the trivial cycle.

Theorem

Suppose the only extreme cycle is the trivial one. Then the set

{eλ : λ =
n∑

k=0

Rk lk , lk ∈ L, n ∈ N}

is an orthonormal basis for L2(µB ).
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Forier series on fractals

If there are some non-trivial cycles, take an extreme cycle c point and
apply the Cuntz isometries to e−c . We obtain the following result.

Theorem

Let Λ be the smallest set which contains −c for all extreme cycle points
c and which has the invariance property RΛ + L ⊂ Λ. Then

{eλ : λ ∈ Λ}

is an orthonormal basis for L2(µB).

Application: take R = 2, B = {0, 1} then µB is the Lebesgue measure on

[0, 1]. Take L = {0, 1}. Since mB(x) = (1 + e2πix)/2, we have two

extreme cycles {0}, and {1}. Applying the theorem, we get the classical

Fourier series.
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Walsh series on [0, 1]

Let X = [0, 1] with the Lebesgue measure, r(x) = 2x mod 1. The
functions m0 = 1 and m1 = χ[0,1/2) − χ[1/2,1) form a QMF basis, so the
operators

S0f (x) = f (2x mod 1), S1f (x) = m1(x)f (2x mod 1),

are Cuntz isometries on L2[0, 1].

Theorem

The family
{Sj1 . . . Sjn1 : j1, . . . , jn ∈ {0, 1}, n ≥ 0}

is an orthonormal basis for L2[0, 1], namely the classical Walsh basis.
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Generalized Walsh series on [0, 1]

Let X = [0, 1], with the Lebesgue measure r(x) = Nx mod 1. Let A be an
N ×N unitary matrix with first row constant 1/

√
N. Define the functions

mj =
√
N

N∑
k=1

ajkχ[k/n,(k+1)/n).

Then (mj)
N
j=1 is a QMF basis so the operators

Sj f (x) = mj(x)f (Nx mod 1), (j = 1, . . . ,N)

are Cuntz isometries on L2[0, 1].

Theorem

The family

{Sj1 . . . Sjn1 : j1, . . . , jn ∈ {1, 2, . . . ,N − 1}, n ≥ 0}

is an orthonormal basis for L2[0, 1].

Dorin Dutkay Orthonormal bases and Parseval frames generated by Cuntz algebras and row co-isometries



Parseval frames and Row co-isometries

Definition

A family of vectors {fi}i∈I in a Hilbert space K , is a Parseval
frame if ∑

i∈I
| ⟨v , fi ⟩ |2 = ∥v∥2, (v ∈ H).

Theorem

Every Parseval frame is a projection of an orthonormal basis.
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Parseval frames and Row co-isometries

Theorem (Popescu, Bratteli et al.)

Let K be a Hilbert space, and let V0, . . . ,VN−1 be a row
co-isometry, i.e.,

N−1∑
i=0

ViV
∗
i = IK

Then K can be embedded into a larger Hilbert space H carrying a
representation S0, . . . ,SN−1 of the Cuntz algebra ON such that K
is cyclic for the representation, and if PK : H → K is the projection
onto K we have

S∗
i (K ) ⊂ K , and V ∗

i PK = S∗
i PK ,Vi = PKSi|K .

Start with a row co-isometry (Vi )
N−1
i=0 . Dilate it to a Cuntz

representation (Si )
N−1
i=0 . Obtain an orthonormal basis using the

Si ’s. Project back to obtain a Parseval frame generated by the Vi ’s.
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Parseval frames on fractals

Assume that there exists a finite set L ⊂ Z with 0 ∈ L, |L| =: M and complex numbers
(αl )l∈L such that the following properties are satisfied:

1 α0 = 1.

2 The matrix

T :=
1

√
N

(
e2πiR−1 l·bαl

)
l∈L,b∈B

(0.1)

is an isometry, i.e., T∗T = IN , i.e., its columns are orthonormal, which means
that

1

N

∑
l∈L

|αl |2e2πiR−1 l·(b−b′) = δb,b′ , (b, b′ ∈ B). (0.2)

Construct the components of the row co-isometry

Vl f (x) = αie
2πilx f (r(x)), (x ∈ XB , l ∈ L, f ∈ L2(µB)).
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Parseval frames on fractals

Definition

Let

mB (x) =
1

N

∑
b∈B

e2πibx
, (x ∈ R). (0.3)

Aa set M ⊂ R is called invariant if for any point t ∈ M, and any l ∈ L, if αlmB (R−1(t − l)) ̸= 0, then

gl (t) := R−1(t − l) ∈ M. M is said to be non-trivial if M ≠ {0}. We call a finite minimal invariant set a
min-set.
Note that ∑

l∈L

|αl |
2 |mB (gl (t))|

2 = 1 (t ∈ Rd ), (0.4)

and therefore, we can interpret the number |αl |2 |mB (gl (t))|2 as the probability of transition from t to gl (t), and
if this number is not zero then we say that this transition is possible in one step (with digit l), and we write

t → gl (t) or t
l→ gl (t). We say that the transition is possible from a point t to a point t′ if there exist t0 = t,

t1, . . . , tn = t′ such that t = t0 → t1 → · · · → tn = t′. The trajectory of a point t is the set of all points t′

(including the point t) such that the transition is possible from t to t′.
A cycle is a finite set {t0, . . . , tp−1} such that there exist l0, . . . , lp−1 in L such that
gl0 (t0) = t1, . . . , glp−1

(tp−1) = tp := t0. Points in a cycle are called cycle points.

A cycle {t0, . . . , tp−1} is called extreme if |mB (ti )| = 1 for all i ; by the triangle inequality, since 0 ∈ B, this is
equivalent to ti · b ∈ Z for all b ∈ B.
Let c be an extreme cycle point in some finite minimal invariant set. A word l0 . . . lp−1 in L is called a cycle word
for c if glp−1

. . . gl0 (c) = c and glk
. . . gl0 (c) ̸= c for 0 ≤ k < p − 1, and the transitions

c → gl0 (c) → gl1 gl0 (c) → · · · → glp−2
. . . gl0 (c) → glp−1

. . . gl0 (c) = c are possible.
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Parseval frames on fractals

For every finite minimal invariant set M, pick a point c(M) in M and define
Ω(c(M)) to be the set of finite words with digits in L that do not end in a cycle word
for c(M), i.e., they are not of the form ωω0 where ω0 is a cycle word for c and ω is
an arbitrary word with digits in L.

Theorem

Suppose (R,B, L) and (αl )l∈L satisfy the Assumptions. Then the set

{ n∏
j=0

αlj

 el0+Rl1+···+Rk lk+Rk+1c(M) : l0 . . . ln ∈ Ω(c(M)),M is a min-set

}

is a Parseval frame for L2(µ(R,B)).
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