A bounded measurable set $\Omega \subset \mathbb{R}^n$ is called spectral if $L^2(\Omega)$ has an orthogonal basis consisting of exponential functions. We say that Ω is a tile if there it has a tiling complement T such that almost every $x \in \mathbb{R}^n$ can uniquely be written as $x = \omega + t$, where $\omega \in \Omega$ and $t \in T$.

Fuglede conjectured that Ω is spectral if and only if it is a tile. The conjecture was first disproved by Tao, who defined a version of the conjecture for finite groups and found a counterexample using Hadamard matrices. It has been proved that the spectral-tile direction of Fuglede’s conjecture holds in \mathbb{R} if and only if it holds for every finite cyclic group.

We will present ideas of the proofs that Fuglede’s conjecture holds for \mathbb{Z}_{pqrs}, \mathbb{Z}_{p^2qr}, and $\mathbb{Z}_p^2 \times \mathbb{Z}_q$, where p, q, r, s are different primes.